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The numerical solution of mathematical models for reaction systems in general, and react-
ing flows in particular, is a challenging task because of the simultaneous contribution of a
wide range of time scales to the system dynamics. However, the dynamics can develop
very-slow and very-fast time scales separated by a range of active time scales. An oppor-
tunity to reduce the complexity of the problem arises when the fast/active and slow/active
time scales gaps becomes large. We propose a numerical technique consisting of an algo-
rithmic framework, named the G-Scheme, to achieve multi-scale adaptive model reduction
along-with the integration of the differential equations (DEs). The method is directly appli-
cable to initial-value ODEs and (by using the method of lines) PDEs. We assume that the
dynamics is decomposed into active, slow, fast, and when applicable, invariant subspaces.
The G-Scheme introduces locally a curvilinear frame of reference, defined by a set of ortho-
normal basis vectors with corresponding coordinates, attached to this decomposition. The
evolution of the curvilinear coordinates associated with the active subspace is described by
non-stiff DEs, whereas that associated with the slow and fast subspaces is accounted for by
applying algebraic corrections derived from asymptotics of the original problem. Adjusting
the active DEs dynamically during the time integration is the most significant feature of the
G-Scheme, since the numerical integration is accomplished by solving a number of DEs typ-
ically much smaller than the dimension of the original problem, with corresponding saving
in computational work. To demonstrate the effectiveness of the G-Scheme, we present
results from illustrative as well as from relevant problems.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Multi is probably the keyword that best identifies the current trend in numerical modeling. The next frontier in numerical
simulation involves multi-physics, multi-scale, multi-disciplinary problems, possibly aimed at design or control applications.
Disciplines eager of computing power range from genetics, earth climate, biology, energy and combustion, and micro/nano-
science and technology, among the most prominent. This demand cannot be simply accommodated by the otherwise tre-
mendous progress achieved in hard and soft computer power; i.e., in parallel computing and code language development.
. All rights reserved.
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Breakthroughs are also necessary in physical/mathematical modeling and numerical/algorithmic developments. The present
work is a contribution in this direction. While we believe that the applicability of our resulting algorithm is far ranging, with-
in the following presentation we focus primarily on chemical kinetics applications.

No longer than 10 years ago, a direct numerical simulation (DNS) [1] of a turbulent flame with a four-step kinetics mech-
anism on a 10 mm box constituted the state-of-the-art in combustion simulation. Nowadays, the targets are DNSs of turbu-
lent combustion of surrogate fuels, in half-a-meter domains. The numerical integration of the mathematical model of
reactive flows involving detailed hydrocarbon kinetics with hundreds of species and thousands of reactions is a formidable
task because of the wide range of time scales, which can easily span 10 orders of magnitude, characterizing these large ki-
netic mechanisms.

The interaction of transport processes with reactions generates both thin spatial layers and temporal stiffness. Stan-
dard remedies to face these challenges are the use of adaptive mesh refinements or wavelet adaptive multilevel repre-
sentations [2] to deal with thin spatial structures, and (semi-)implicit time advancement of the numerical integration.
However, these approaches can be successfully pursued only when the number of unknowns in the problem is not very
large.

One way to reduce the size of the problem, i.e., the number of unknowns, is to resort to model reduction techniques, such
as QSSA [3,4], CSP [5,6], or ILDM [7], combined with storage-retrieval [8,9] techniques, where the reduction is obtained by
prescribing a (small) number of parameters which are used to construct a look-up-table from which all required information
can be reconstructed. The strength of these tools relies on a corpus of theoretical results obtained by exploiting asymptotic
properties of dissipative dynamical systems, which ensures that, under proper conditions, the actual dimension of the dis-
sipative system might be much smaller than the original size. This lower dimensional subspace, the slow invariant manifold
(SIM), can be tabulated by means of a small number of free parameters. With the reduced dimension, this approach allows in
principle to eliminate the stiffness, since by construction the reduced model is freed from the action of the fast scales. How-
ever, look-up-tables suffer the curse of dimensionality, which makes problems with dimension larger than typically 20
intractable. This constraint essentially prevents the effective use of any of these techniques with detailed reaction mecha-
nisms of hydrocarbons. Lastly, these methods do not deal at all with the presence of initial transients, thus a stiff system
has to be integrated until such time that the solution comes sufficiently close to the SIM.

A promising route is offered by the successive application of different tools, each aimed at obtaining a model of dimension
smaller than that of the model upon which the tool is applied. Thus, the original detailed kinetics mechanism (say of 500
species) can be simplified by removing redundant species and reactions (DRG [10], DRGEP [11], CSP [12], Time-life analysis
[13]) and its dimension reduced accordingly (say to 100 species). Then, species with similar thermo-chemical and kinetics
properties, typically isomers, can be lumped [14] into new generalized species, so as to obtain a further dimensional reduc-
tion (say to 70 species). Finally, QSSA is applied to bring the surviving number of species to about 20, so that ILDM-like and
storage-retrieval techniques can be effectively applied. Clearly, the whole process is not only cumbersome, but at each stage
one adds more and more approximations/inaccuracies, whose ultimate impact on the accuracy of the reactive flow simula-
tion is difficult to detect, trace, and estimate. Basically, this strategy is a brilliant, but time consuming, engineering approach
to deal with problems otherwise intractable to date.

The present work deals with model reduction concepts that are used to develop a time accurate computational tool that is
able to exploit, adaptively, opportunities for reduction from both fast/active and slow/active spectral gaps. The class of multi-
scale problems which can be efficiently addressed with the new framework is that of stiff problems characterized by fast
dissipative time scales, whereas, in its present form, the algorithm can achieve little or no reduction for problems character-
ized by slow/fast oscillations. Operationally, the new framework is designed to deal with the same class of problems as those
handled efficiently by BDF methods.

The proposed numerical technique consists of an algorithmic framework, that for convenience will be referred to as the G-
Scheme, to achieve model reduction along-with the numerical integration of a set of differential equations (DEs). The method
is directly applicable to initial-value ordinary differential equations (ODEs), and by using the method of lines to partial
differential equations (PDEs) as well. We describe the G-Scheme as a ‘‘framework”, since, as will become apparent, the
scheme is a modular procedure, where several of its components can be replaced or improved, while the overall framework
remains unchanged, and can be used in different ways to achieve different goals.

The rationale used in constructing the G-Scheme is as follows. The construction of reduced models for a dynamical system
whose asymptotic behavior might involve fixed equilibrium points, or nontrivial limit sets, such as limit cycles or chaotic
attractors, is strictly related to the occurrence of a gap in the spectrum of its characteristic time scales (time-scale separa-
tion). A temporal gap separates fast modes relaxing towards a SIM from the slow modes that drive the system, whereas for
systems possessing nontrivial invariant limit sets, the temporal dichotomy is between stable and unstable modes. In both
cases, the most relevant asymptotic behavior of the system is confined to an invariant set which is attracting: the SIM or
the limit attractor.

The characterization of the local structure of these invariant subspaces can be of great importance in the development of
methods aimed at achieving a low-dimensional description of dynamical systems. The basic idea is that the invariant sub-
spaces, ordered in a decreasing way with respect to their characteristic time scales, provide the most convenient and natural
basis for describing the unstable/slow and stable/fast components of the dynamics. Consequently, model reduction can be
achieved by filtering out the dynamically irrelevant degrees of freedom associated with the most stable (fast) components
characterized by the most negative characteristic time scales.
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Ideally, one would like to decompose the tangent space Tx at any point x 2 RN into N invariant subspaces, so that the
dynamics within each invariant subspace is fully decoupled from all other invariant subspaces, and associated with a single
characteristic time scale. This goal might easily be accomplished in linear problems, since the eigenvectors identify invariant
directions, and the magnitude of eigenvalues the reciprocal of the corresponding characteristic time scales. On the other
hand, the invariant geometric structure of nonlinear dynamical systems possessing nontrivial invariant sets is described
by Oseledec’s theorem [15]. The structure of the invariant subspaces can be formulated by introducing the concept of invari-
ant Lyapunov–Oseledec filtrations at each point of the invariant set and the spectrum of the Lyapunov exponents. However,
Oseledec’s theorem does not offer a constructive method for the Lyapunov–Oseledec filtrations. The actual construction of
the invariant filtrations, or even of some approximations of them [16], is, when feasible, a very time consuming task, and
thus not suited to form the basis of an efficient model reduction technique.

However, the very idea of decomposing the tangent space into subspaces, not necessarily invariant, characterized by time
scales of comparable magnitude is at the core of the G-Scheme. We assume that the tangent space Tx can be decomposed as
the direct sum of four subspaces, Tx ¼ E�H�A� T, where the active subspace A contains all the intermediate, or active,
time scales present at that instant, all scales slower/faster than the active ones are confined in the subspaces H and T, respec-
tively, and, if the system possesses invariants, E is the subspace spanned by them. Using a terminology introduced in the
Computational Singular Perturbation (CSP) method [17–19] in an ODE problem, H involves all dormant modes, T all fast ex-
hausted modes, A all active modes, and E all conserved modes. In a partial differential equation (PDE) problem, H will in-
volve all nearly-frozen processes, T all near-equilibrium processes, A all processes in non-equilibrium, and, when applicable,
E will involve invariants.

At each state point x corresponding to time t, the G-Scheme introduces a curvilinear frame of reference, defined by a set of
orthonormal basis vectors with corresponding coordinates, attached to the decomposition of the tangent space in the four
subspaces. At any time instant of the system evolution, the curvilinear coordinates are suitable (linear) combinations of the
perturbations Dx of the original state vector x about x itself, which are assumed to be valid only within a time scale suitably
defined. Thus, they can be thought of as ‘‘lumped” variables dynamically adjusting to the system’s evolution.

The evolution of the curvilinear coordinates associated with the subspace A, is described by NA ¼ dimðAÞ ð6 NÞ differen-
tial equations, whereas the variation of the curvilinear coordinates associated with the subspaces H and T are accounted for
by applying algebraic corrections derived from asymptotics of the original ODEs. Adjusting the number of active ODEs
dynamically during the time integration is the most significant feature of the G-Scheme, because the numerical integration
of the state vector x 2 RN is obtained by solving a number of ODEs typically much smaller than N, with corresponding com-
putational savings. The active ODEs evolving in A are freed from fast scales, and thus are non-stiff; they can be solved by
resorting to any explicit scheme of integration (e.g. ERK4). When compared to a standard backward difference formula
(BDF) implicit scheme used for stiff problems, the G-Scheme offers the advantage of requiring the solution of NA explicit ODEs
instead of N implicit ODEs, and the disadvantage of requiring the identification of the set of orthonormal basis vectors that
defines the curvilinear frame of reference.

Fenichel’s theorem [20] inspired our asymptotic treatment of the slow system related to the concept of a SIM, presented
in Section 2.5, and that of the fast system, related to the concept of the bundle of fast fibers, presented in Section 2.8. Most of
the model reduction techniques mentioned above, say ILDM, are deeply rooted on the possibility of exploiting the existence
of a SIM. However, the experience of these past years has shown that model reduction can be achieved only when the SIM
possesses specific properties, such as smoothness, uniqueness, and compactness. Another challenge associated with SIMs is
that the proper SIM dimension is variable in different regions of the phase space. Not too much attention has been given to
the potential of achieving model reduction by exploiting the fast fibers bundle. To the authors’ knowledge, we are aware of
only one approach, due to Bykov et al. [21], aimed at achieving model reduction on the basis of the fast system form during
the explosive stages of the system dynamics. Indeed, the concept of fast fibers might be useful during the transient approach
to a SIM, as well as during a truly explosive regime. Note that any SIM-based model reduction technique requires that the
initial condition of the differential problem be on a SIM before the (slow system based) reduced model can be applied.

The concepts of SIM and fast fiber are invoked in the G-Scheme locally, that is, differently from other approaches, for the G-
Scheme to be applicable it is not required that a ‘‘global” SIM exists, nor that the SIM dimension be constant or prescribed in
advance. Similar comments apply to the exploitation of the fast fibers. Another unique feature of the G-Scheme is that both
archetypes of reduction, SIM and fast fibers, collaborate to define the G-Scheme reduction: the SIM and the fast fiber concepts
are invoked to define the T and H subspaces, respectively.

This said, the formulation in the G-Scheme of active ODEs follows the concept of linear embedding adopted by Adrover
et al. [22]. The algebraic correction accounting for the contribution of the fast scales relies on the concept of homogeneous
(radical) correction introduced in the CSP method [19,23], incorporated in the time-split explicit solver based on CSP [23],
and used in the CSP/tabulation technique [24] to both create and reuse the look-up table for the CSP vectors. The algebraic
correction accounting for the contribution of the slow scales relies on a local linearization of the ODEs related to the slow
subspace.

Clearly, the success of the G-Scheme relies heavily on the ability to identify a decomposition of Tx which ensures minimal
(ideally no) coupling among slow, fast, and active time scales. We show in Section 2.4 that the problem of finding a frame of
reference yielding the maximal degree of slow/fast decoupling can be approached by resorting to the CSP refinements pro-
cedure [19,25]. In this regard, it is worth recalling that it has been proved in [26,27], for singularly perturbed problems in the
canonical slow and fast system forms with an explicit constant small parameter, that the CSP refinement procedure is able to
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provide the asymptotic expansion of both the SIM and fast fiber bundle, as indicated by the Fenichel theorem [20]. For sim-
plicity, we identify in this work the set of basis vectors needed by the G-Scheme with the right eigenvectors of the Jacobian
matrix of the vector field, this yielding a leading order approximation of the CSP vectors. The limitations associated with this
choice of basis vectors when the dynamics possesses a nontrivial asymptotic behavior will be pointed out with reference to
the considered numerical tests.

The paper is organized as follows. The theoretical derivations of components used by the G-Scheme is detailed in Section
2, the G-Scheme itself is presented in Section 3, and an illustrative example of the scheme is reported in Section 4 with ref-
erence to a very stiff and non-normal linear model problem. The numerical validation of the G-Scheme with reference to: (i)
the Semenov model featuring an explosive/dissipative stiff nonlinear behavior is reported in Section 5.1, (ii) the model of an
isobaric continuously-stirred tank reactor (CSTR) at very low pressure involving CO/H2 kinetics which features a complex
nonlinear behavior is reported in Section 5.2, and (iii) a reaction–diffusion [28] model exhibiting a rich dynamic structure
is solved in Section 5.3. In Section 6 we provide a discussion of the G-Scheme and draw some conclusions.
2. Theory

Consider the Cauchy problem defined by a set of autonomous ODEs:
dxðtÞ
dt
¼ fðxðtÞÞ; xðt0Þ ¼ x0 ð1Þ
with time t 2 ðt0; tf � � R, the state vector x 2 RN , and the nonlinear vector field f : E � RN ! RN . In the case of PDEs, N rep-
resents the dimension of the system after spatial discretization.

The state vector xðtÞ at time t ¼ tn þ s, with s 2 X � ð0;Dt� � R, where Dt ¼ ðtnþ1 � tnÞ, can always be expressed as the
sum of the state vector xðtnÞ, for n ¼ 0;1;2; . . ., and a perturbation vector DxðsÞ:
xðtÞ ¼ xðtnÞ þ DxðsÞ: ð2Þ
We note that tn is some fixed arbitrary time. The component-wise representation of the perturbation vector DxðsÞ can be
expressed in terms of Cartesian coordinates Dx ¼ Dxiei, where ei and ej are the unit vectors of the Cartesian frame of refer-
ence, as well as in terms of curvilinear coordinates Dx ¼ Dniai ¼ Dnjaj related to the sets of orthonormal covariant and con-
travariant basis vectors ai and aj, respectively, for which the following properties hold:
ai � aj ¼ di
j and di

jaiaj ¼ 1; ð3Þ
where di
j is the Kronecker delta symbol and 1 is the unit tensor. We adopt Einstein’s notation for indices fi; j; kg. All subscript

or superscript of such indices, unless otherwise noted, take on values from 1 to N, and repeated indices, one a superscript and
the other a subscript, are to be summed; the range of other indices will be made explicit at due time. The component-wise
representation of the perturbation vector Dx in the curvilinear coordinates reads:
Dx ¼ 1 � Dx ¼ di
jaiaj

� �
� Dx ¼ ai di

ja
j � Dx

� �
¼ Dniai; ð4Þ
where
Dni ¼ ai � Dx ¼ ai � Dxjej ¼ bi
jDxj ð5Þ
and
bi
j � ai � ej: ð6Þ
Similarly, it is easy to show that
Dxj ¼ aj
iDni; ð7Þ
where
aj
i � ej � ai ð8Þ
and to note that
aj
ib

i
j ¼ bi

ja
j
i ¼ 1: ð9Þ
We take a curvilinear frame of reference that varies with time. If the system is autonomous, then the frame of reference
depends only on the state of the system. Subsequently, we can write
xðtÞ ¼ xðtnÞ þ DxðsÞ ¼ xðtnÞ þ DxiðsÞei ¼ xðtnÞ þ DniðsÞaiðsÞ: ð10Þ
Expansion (10), when substituted into (1), yields the following problem for the curvilinear coordinates:
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dDnk

ds
¼ akðsÞ � fðxðtnÞ þ DniðsÞaiðsÞÞ � akðsÞ � daiðsÞ

ds
DniðsÞ;

Dnkð0Þ ¼ 0: ð11Þ
If we define 1
2 3 12 3
AðsÞ � ½a1ðsÞ � � � aiðsÞ � � � aNðsÞ�; BðsÞ �

a ðsÞ
� � �

ajðsÞ
� � �

aNðsÞ

6666664
7777775
; DnðsÞ �

Dn ðsÞ
� � �

DnjðsÞ
� � �

DnNðsÞ

6666664
7777775
; ð12Þ
where
AðsÞBðsÞ ¼ BðsÞAðsÞ ¼ I; ð13Þ
I being the identity matrix, we can rewrite (11) in vector form:
dDn

ds
¼ BðsÞfðxðtnÞ þ AðsÞDnðsÞÞ � BðsÞdAðsÞ

ds
DnðsÞ;

Dnð0Þ ¼ 0: ð14Þ
2.1. Invariants

Suppose that the system possesses E invariant quantities nc , where c ¼ 1; . . . ; E. In (10) we can isolate the contributions to
Dxðs) lying in the invariant subspace C ¼ E spanned by the vectors facg from those in the orthogonal complement NC to C

ðRN = NC� CÞ spanned by the vectors fac0 g, where c0 ¼ Eþ 1; . . . ;N:
xðtÞ ¼ xðtnÞ þ DxðsÞ ¼ xðtnÞ þ AðsÞDnðsÞ ¼ xðtnÞ þ DncðsÞacðsÞ þ Dnc0 ðsÞac0 ðsÞ: ð15Þ
Clearly, DncðsÞ � 0 for c ¼ 1; . . . ; E because nc is an invariant, and therefore
xðtÞ ¼ xðtnÞ þ DxðsÞ ¼ xðtnÞ þ Dnc0 ðsÞac0 ðsÞ: ð16Þ
Note that by construction ac0 ðsÞ � acðsÞ ¼ 0 because the basis aiðsÞ is assumed to be orthonormal.

Remark 1. Constructing DxðsÞ with contributions solely in NC ensures that xðtÞ will preserve all invariants for s 2 X.
2.2. Slow/fast decomposition

Assume that the state vector xðsÞ can be decomposed into slow and fast components:
xðtÞ ¼ xðtnÞ þ DxðsÞ ¼ xðtnÞ þ Dnc0 ðsÞac0 ðsÞ ¼ xðtnÞ þ DsðsÞ þ DrðsÞ; ð17Þ
where the perturbation vectors DsðsÞ and DrðsÞ are defined as
DsðsÞ � DnsðsÞasðsÞ ¼ AsðsÞDnsðsÞ and DrðsÞ � DnrðsÞarðsÞ ¼ ArðsÞDnrðsÞ; ð18Þ
s ¼ Eþ 1; . . . ;M; r ¼ M þ 1; . . . ;N, and Dns and Dnr are the amplitudes of the perturbations along the slow and fast directions
asðsÞ and arðsÞ, respectively. From now on, we will refer to Dns and Dnr as slow and fast coordinates, respectively. The def-
initions ‘‘slow” and ‘‘fast” will be made more precise later.

This decomposition induces a slow/fast partitioning of (14):
d
ds

DnsðsÞ
DnrðsÞ

� �
¼ BsðsÞ

BrðsÞ

� �
fðxðtnÞ þ DsðsÞ þ DrðsÞÞ �

BsðsÞ dAsðsÞ
ds

BsðsÞ dArðsÞ
ds

BrðsÞ dAsðsÞ
ds BrðsÞ dArðsÞ

ds

0
BB@

1
CCA DnsðsÞ

DnrðsÞ

� �
; ð19Þ

Dnsð0Þ
Dnrð0Þ

� �
¼ 0s

0r

� �
; ð20Þ
where we have introduced the decompositions
AðsÞ ¼ ðAsðsÞ ArðsÞÞ; BðsÞ ¼ BsðsÞ
BrðsÞ

� �
; DnðsÞ ¼

DnsðsÞ
DnrðsÞ

� �
ð21Þ
and we see that Dns and Dnr are obviously coupled.

Remark 2. The slow/fast decomposition of the tangent space is the basis of the CSP method as well as of the present work;
the slow/fast decomposition in the G-Scheme is used to identify the slow/fast components of the perturbation of the state
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vector about the reference state xðtnÞ, whereas in the CSP method it is used to identify the slow/fast components of the vector
field at the reference state xðtnÞ.
2.3. Linear forms

We expand fðxðtÞÞ about xðtnÞ, so that to leading order we have
fðxðtÞÞ ¼ fðxðtnÞ þ DxðsÞÞ � fðxnÞ þ JðxðtnÞÞAðsÞDnðsÞ; ð22Þ
where
JðxðtnÞÞ �
@f
@x

� �
xðtnÞ

ð23Þ
and also note that dAðsÞ=ds for an autonomous system is a state function since:
dAðsÞ
ds

¼ GradxAðsÞ � dxðtÞ
dt
¼ GradxAðsÞ � fðxðtÞÞ: ð24Þ
Linearization of the vector field in (19) and (20) yields:
d
ds

DnsðsÞ
DnrðsÞ

� �
¼ BsðsÞ

BrðsÞ

� �
fðxðtnÞÞ þ

Ks
sðxðtnÞ; sÞ Ks

rðxðtnÞ; sÞ
Kr

sðxðtnÞ; sÞ Kr
rðxðtnÞ; sÞ

� �
DnsðsÞ
DnrðsÞ

� �
; ð25Þ

Dnsð0Þ
Dnrð0Þ

� �
¼ 0s

0r

� �
; ð26Þ
where now with fp; qg ¼ fs; rg we have
Kp
qðxðtnÞ; sÞ � BpðsÞ � dAqðsÞ

ds
þ JðxðtnÞÞAqðsÞ

� �
¼ dBpðsÞ

ds
þ BpðsÞJðxðtnÞÞ

� �
AqðsÞ ð27Þ
and we define � �

KðxðtnÞ; sÞ �

Ks
sðxðtnÞ; sÞ Ks

rðxðtnÞ; sÞ
Kr

sðxðtnÞ; sÞ Kr
rðxðtnÞ; sÞ

: ð28Þ
Remark 3. For s ¼ 0, the matrix KðxðtnÞ; sÞ coincides with that used in the CSP refinements.

The off-diagonal blocks Ks
rðxðtnÞ; sÞ and Kr

sðxðtnÞ; sÞ represent the ‘‘contamination” of the slow/fast dynamics due to the
contributions of the fast/slow time scales. The formal solution of the linear problem (25) and (26) is given by:
DnðsÞ ¼ e
R s

0
KðxðtnÞ;lÞdl

Z s

0
e�
R h

0
KðxðtnÞ;mÞdmBðhÞdh

� 	
fðxðtnÞÞ: ð29Þ
If we assume that a curvilinear transformation exists so that the matrix KðxðtnÞ; sÞ is block-diagonal, i.e.
Kr
sðxðtnÞ; sÞ ¼ Ks

rðxðtnÞ; sÞ ¼ 0; ð30Þ
then (25) and (26) become
d
ds

DnsðsÞ
DnrðsÞ

� �
¼ BsðsÞ

BrðsÞ

� �
fðxðtnÞÞ þ

Ks
sðxðtnÞ; sÞ 0

0 Kr
rðxðtnÞ; sÞ

� �
DnsðsÞ
DnrðsÞ

� �
; ð31Þ

Dnsð0Þ
Dnrð0Þ

� �
¼ 0s

0r

� �
ð32Þ
and (29) becomes
DnpðsÞ ¼ e
R s

0
Kp

pðxðtnÞ;lÞdl
Z s

0
e�
R h

0
Kp

pðxðtnÞ;mÞdmBpðhÞdh

� 	
fðxðtnÞÞ: ð33Þ
In addition, if we neglect the rotation of the basis vectors, i.e., BpðsÞ � Bpð0Þ and Kp
pðxðtnÞ; sÞ � Kp

pðxðtnÞ;0Þ, then
DnpðsÞ ¼ Bpð0Þ eKp
pðxðtnÞ;0Þs � I

Kp
pðxðtnÞ;0Þ

 !
fðxðtnÞÞ; ð34Þ

� sBpð0Þ I þ 1
2

Kp
pðxðtnÞ; 0Þsþ O Kp

pðxðtnÞ;0Þ2s2
� �� �

fðxðtnÞÞ: ð35Þ
In (33)–(35), the dummy index p can take the value of either r or s.
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2.4. Basis vectors and time scales

The most important decision to be taken in the implementation of the G-Scheme framework is the choice of a curvilinear
frame of reference, i.e., a matrix A, yielding a maximal degree of slow/fast decoupling. In fact, the basis vectors ai used to
define the matrix A might be found, in principle, by different means, providing that they can block-diagonalize KðxðtnÞ; sÞ
in a cost efficient way.

This challenge could be approached by resorting to the CSP refinements procedure [19,25], given that the definition of the
matrix KðxðtnÞ; sÞ is the same as that introduced in the standard CSP formulation. In this work, we identify the set of basis
vectors ai with the right eigenvectors of the Jacobian matrix J of the vector field, with the dual vectors aj coinciding with the
left eigenvectors of J. This yields a leading order approximation of the CSP vectors [25]. As an estimate of the characteristic
time scales, we consider the magnitude of the reciprocal of the eigenvalues of J; kj. The ordering of the basis vectors is critical
for proper decomposition. Here, we order the modes according to the magnitude of the corresponding complex eigenvalues,
with
0 ¼ k1 ¼ � � � ¼ kE < jkEþ1j 6 � � � 6 jkH�1j 	 jkHj 6 � � � 6 jkT j 	 jkTþ1j 6 � � � 6 jkN j;

where
0 ¼ k1 ¼ � � � ¼ kE identify the time scales in the subspace E;

jkEþ1j 6 � � � 6 jkH�1j identify the time scales in the subspace H;

jkHj 6 � � � 6 jkT j identify the time scales in the subspace A;

jkTþ1j 6 � � � 6 jkN j identify the time scales in the subspace T:

ð36Þ
The decomposition induced by the above time scales ordering assumes that the tangent space Tx is given by the direct sum
of four subspaces:
Tx ¼ E�H�A� T; ð37Þ

where the active subspace A contains all the intermediate, currently active (dynamic) time scales, all scales slower/faster
than the active ones are confined in the subspaces H=T, and, if the system possesses E invariants, E is the subspace spanned
by the directions associated with them. Moreover, NE ¼ dimðEÞ ¼ E;NH ¼ dimðHÞ ¼ H � E� 1;NA ¼ dimðAÞ ¼ T � H þ 1, and
NT ¼ dimðTÞ ¼ N � T . Note that, because of this ordering (possibly complex) eigenvalues with both negative and positive real
parts can be found in H and A, whereas we expect the eigenvalues in T to have a dominant negative real part. Indeed, this is
the distinguishing feature of the class of problems for which the G-Scheme is expected to perform most effectively. The ratio
�H �
jkH�1j
jkHj

	 1 ð38Þ
is a measure of the spectral gap between the slow and active subspaces, while
�T �
jkT j
jkTþ1j

	 1 ð39Þ
is a measure of the spectral gap between the active and fast subspaces. Since the G-Scheme approximates the contributions of
the very-slow and very-fast time scales with asymptotic corrections, it is expected that the accuracy and efficiency of the
scheme will be higher for larger spectral gaps.

The controlling (driving) time scale of the dynamics is the fastest of the active time scales present in A, and will be of the
order of the reciprocal of jkT j. Note that the fastest of the slow time scales is of the order of the reciprocal of jkH�1j. A param-
eter that will play an important role in the accuracy of the solution obtained by the G-Scheme is given by
�H�T �
jkH�1j
jkT j

: ð40Þ
In preparation of the derivation of the slow and fast reduced models described in the following sections, it is useful to
recast the decomposition presented in (37) as
Tx ¼ E�H�A� T ¼ E� Ss � Rs ¼ E� Sr � Rr ð41Þ
with the following definitions for


 the slow reduced model
Ss ¼ H�A and Rs ¼ T; ð42Þ
where
jkEþ1j 6 � � � 6 jkT j identify the time scales in Ss;

jkTþ1j 6 � � � 6 jkN j identify the time scales in Rs
ð43Þ
with dimðSsÞ ¼ T � E ¼ NH þ NA;dimðRsÞ ¼ N � T ¼ NT , and spectral gap �s ¼ �T 	 1;
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 the fast reduced model
1 It is
Sr ¼ H and Rr ¼ A� T; ð44Þ
where
jkEþ1j 6 � � � 6 jkH�1j identify the time scales in Sr ;

jkHj 6 � � � 6 jkNj identify the time scales in Rr
ð45Þ
with dimðSrÞ ¼ H � E� 1 ¼ NH;dimðRrÞ ¼ N � H þ 1 ¼ NA þ NT , and spectral gap �r ¼ �H 	 1.

A higher-order approximation of the ideal basis vectors can be found by resorting to the CSP refinements, which consist of
a two-step iterative procedure. Each application of the first step decreases the magnitude of the upper-right matrix block Ks

r

by an order �s=�r for the slow/fast system. Each application of the second step decreases the magnitude of the lower-left ma-
trix block Kr

s by an order �r=�s for the fast/slow system. Zagaris et al. [26,27] proved that for singularly perturbed problems in
the canonical slow/fast system form, and with an explicit constant small parameter, the CSP refinement procedure is able to
provide the asymptotic expansions of both the SIM and the tangent space of the fast fibers, as indicated by the Fenichel the-
orem [20].

As discussed in the Introduction, the ideal decomposition for nonlinear dynamical systems possessing nontrivial invariant
sets (e.g. limit cycles, chaotic attractors, etc.) involves the invariant Lyapunov–Oseledec filtrations at each point of the invari-
ant set and the spectrum of the Lyapunov exponents, whose actual construction, or even approximations of them [16], is,
when feasible, a very time consuming task, and thus not suited as the basis of an efficient model reduction technique. Thus,
model reduction techniques adopting a decomposition based on the local Jacobian (e.g. eigenvectors, CSP refinements, etc.)
provide sub-optimal performance for this class of problems, as illustrated later in the numerical tests section.

2.5. Ideal slow reduced model

We assume that the tangent space Tx is decomposed into the invariant, E, slow, Ss, and fast, Rs, subspaces:
Tx ¼ E� Ss � Rs:
Consider a state point xðtÞ 2 Ss, so that the vector field fðxðtÞÞ has no component in the fast subspace Rs spanned by the ma-
trix ArðsÞ, that is
BrðsÞfðxðtÞÞ ¼ BrðsÞfðxðtnÞ þ AsðsÞDnsðsÞ þ ArðsÞDnrðsÞÞ ¼ 0r; 8xðtÞ 2 Ss: ð46Þ
By virtue of (30) and (33), and if all the eigenvalues of Kr
rðxðtnÞ; sÞ have negative real parts,1 we have
DnrðsÞ ¼ 0r ; 8s 2 Xs ð47Þ
with Xs ¼ ð0;Dts�;Dts � 1=jkT j, and tnþ1 ¼ tn þ Dts. Eq. (47) implies that a point xðtnÞ initially lying in Ss (thus Dnrð0Þ ¼ 0r)
stays on Ss and is mapped into a point xðtÞ which can be expressed in terms of slow coordinates only:
xðtÞ ¼ xðtnÞ þ DsðsÞ ¼ xðtnÞ þ AsðsÞDnsðsÞ; 8s 2 Xs; ð48Þ
where DnsðsÞ is obtained by solving the set of non-stiff ODE’s in (31), whose solution is given formally by (33) with p ¼ s.
Thus, xðtÞ will lie in Ss during the time interval Xs, if: (i) a set of basis vectors exists which block-decouples the matrix
KðxðtnÞ; sÞ, and (ii) (46) holds.

To summarize, the ideal change of coordinates is such that in Ss:

1. only the slow coordinates DnsðsÞ are non-zero;
2. the rates of change of DnsðsÞ occur on time scales related to Ks

sðxðtnÞ; sÞ;
3. the controlling slow time scale is given by the fastest scale in Ks

sðxðtnÞ; sÞ;
4. in the curvilinear frame of reference, the SIM is identified as the locus where the fast coordinates DnrðsÞ are zero.
Remark 4. The condition that the state point xðtÞ given by (48) will lie in Ss during the time interval Xs can be equivalently
expressed either by (i) the state Eq. (46) expressing the fact that the vector field fðxðtÞÞ has no component in the fast
subspace Rs, or (ii) by the condition that DrðsÞ will remain identically zero in Xs, as expressed by (47). This last result is
essential in the construction and numerical integration of the slow reduced model.
2.6. Numerical integration of the slow reduced model

The numerical integration of the slow reduced model can be obtained by neglecting the linear off-diagonal terms in (19)
and by requiring that the slow evolution of the state vector xðtÞ satisfy the following linear embedding for s 2 Xs:
assumed that the SIM is normally hyperbolic.
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xðtÞ ¼ xðtnÞ þ AsðsÞDnsðsÞ: ð49Þ
Subsequently, we can write
DnrðsÞ ¼ 0r; ð50Þ
dAsðsÞ

ds
¼ GradxAsðsÞfðxðtnÞ þ AsðsÞDnsðsÞÞ;

Asð0Þ ¼ AsðxðtnÞÞ; ð51Þ
dDns

ds
¼ BsðsÞfðxðtnÞ þ AsðsÞDnsðsÞÞ � BsðsÞdAsðsÞ

ds
DnsðsÞ;

Dnsð0Þ ¼ 0s: ð52Þ
At the end of the time increment we have
xðtnþ1Þ ¼ xðtnÞ þ AsðDtsÞDnsðDtsÞ: ð53Þ
Because of (50), and because the vector field f is projected onto the slow subspace in (52), the fast time scales do not con-
tribute or ‘‘contaminate” the dynamics during the time period Xs, and therefore (52) is not stiff.

Remark 5. The linear embedding concept used to define (49) is also used by Adrover at al. [22].
2.6.1. Numerical integration of the slow dynamics
The reduced model (50)–(53) can be solved using different levels of approximation. To leading order, one can assume that

the basis vectors spanning the slow subspace in the time interval Xs do not change much, with their values equal to the val-
ues at s ¼ 0, that is
AsðsÞ � Asð0Þ so that BsðsÞ � Bsð0Þ; ð54Þ
which also implies that the rotation of the basis vectors in the time interval Xs is negligible:
dAsðsÞ
ds

� 0: ð55Þ
Subsequently (49) becomes
xðtÞ ¼ xðtnÞ þ Asð0ÞDnsðsÞ ð56Þ
and (52) and (53) become:
dDns

ds
¼ Bsð0ÞfðxðtnÞ þ Asð0ÞDnsðsÞÞ;

Dnsð0Þ ¼ 0s
ð57Þ
with
xaðtnþ1Þ ¼ xðtnÞ þ Asð0ÞDnsðDtsÞ: ð58Þ
Eq. (57) is nonlinear and non-stiff. It can be solved using any explicit integration scheme of any order of accuracy. Within the
time interval Xs, an inner variable time integration step can be used to ensure a prescribed accuracy level for the solution of
(57). However, due to the fact that we have: (i) neglected the rotation of the basis vectors, (ii) non-ideal slow/fast decoupling,
and (iii) the presence of numerical truncation errors, the state xa violates the SIM constraint (50), and thus xaðtnþ1Þ in (58) is
not equal to xðtnþ1Þ in (53). We next discuss how to enforce the SIM constraint.

2.6.2. SIM constraint
Enforcing the SIM constraint during the time interval s 2 Xs means that (50) or, what is the same, (46) should hold in that

interval. Linearizing the vector field in (46) with respect to the state vector xHðtnþ1Þ ¼ xðtnÞ þ AsðsÞDnsðsÞ, yields
BrðxHÞfðxHÞ þ BrðxHÞJðxHÞArðxHÞDnrðxHÞ � 0r ; ð59Þ
which implies that
Dnr
SIMðxHÞ ¼ �ðBrðxHÞJðxHÞArðxHÞÞ�1BrðxHÞfðxHÞ: ð60Þ
If we ignore the rotation of the basis vector, then xH ! xa, and the result expresses, to leading order, the change in the fast
coordinates necessary to enforce the SIM constraint that is violated by xa after integration of the slow dynamics. This is
equivalent to a projection operation of the state xa onto the SIM. Note that BrðxaÞfðxaÞ is the fast projection of the vector field
at xa; given that its value on the SIM is zero, its norm is a measure of the distance of xa from the SIM. The matrix
ðBrðxaÞJðxaÞArðxaÞÞ�1 has the dimension of time; its norm provides a measure of the magnitude of the fast time scales. The
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final value at the end of the interval s 2 Xs is obtained by adding the contribution of the fast correction (60) to the state
xaðtnþ1Þ found after the integration of the slow dynamics:
2 For
xðtnþ1Þ ¼ xaðtnþ1Þ þ Arðxaðtnþ1ÞÞDnr
SIMðxaðtnþ1ÞÞ: ð61Þ
Remark 6. Eq. (61) shows that the state vector xðtnþ1Þ lies on the SIM by construction.

Remark 7. The additive term in (61) coincides with the (‘‘radical”) correction term introduced in the CSP method [19,23],
incorporated in the time-split explicit solver based on CSP, and used in the CSP/tabulation technique [24] to both create
and reuse the look-up table for the CSP vectors.

We note that (46) identifies the exact SIM by means of an equation of state of the type hSIMðxÞ ¼ 0 only when ideal basis
vectors are available. Otherwise, say when the ideal basis vectors are approximated by eigenvectors, (46) identifies only an
approximate SIM (ASIM), say by means of hASIMðxÞ ¼ 0. Therefore, the state point xðtnþ1Þ obtained by using (61) is such that
hSIMðxðtnþ1ÞÞ– 0. We thus introduce an error,2 �SIM, associated with the choice of basis vectors:
�SIMðxÞ � jhSIMðxÞ � hASIMðxÞj � Oð�q
s Þ; ð62Þ
where �s is a measure of the spectral gap in the slow reduced model, and q is the polynomial degree which characterizes the
accuracy of the ASIM with respect to the exact SIM. Therefore, �SIM can be lowered when: (i) q can be increased by providing
more accurate basis vectors, say by one or more applications of the first step of the CSP refinements, and/or (ii) �s, which
provides a measure of the spectral gap that is a characteristic of the problem (and also, as discussed below, depends on a
user-specified tolerance), is lowered. The error �SIM is inherently due to the fact that the G-Scheme accounts for the contri-
bution of the fast scales with the asymptotic correction (60), which is evaluated by assuming that the SIM is given by (46)
where the Br matrix is typically not ideal. Finally, note that a choice of basis vectors that ensure an ideal decoupling is also
able to zero out the structural error �SIM.

2.7. Slow reduced model dimension

The previous section discussed how to set up a slow reduced model which approximates the exact solution with a user-
prescribed accuracy. To define the reduced model we still have to identify: (i) the slow subspace (tangent space decompo-
sition and slow subspace dimension), and (ii) a state vector x on the slow subspace (on the SIM) from which to start the re-
duced integration, assuming that xH is an intermediate state that does not lie on it. Indeed, a consistent initial condition x for
the slow reduced model should belong to the SIM underlying the reduced model. An estimate of the error introduced by the
adoption of the slow reduced model is given by the distance jx� xHj. To minimize this error one can identify x as the pro-
jection of xH onto the SIM along the fast directions:
x ¼ xH þ ArðxHÞDnrðxHÞ: ð63Þ
The projection can be accomplished if: (i) a proper slow/fast decomposition of xH is identified by a set of basis vectors AðxHÞ
and BðxHÞ, and (ii) the SIM dimension ensures that the distance jx� xHj is smaller than a user-defined tolerance. More spe-
cifically, we prescribe that:
jxj � xH;jj ¼
XN

r¼Tþ1

aj
rðxHÞDnrðxHÞ












 < rtoljjxH;jj þ atolj � ejðxHÞ; j ¼ 1; . . . ;N; ð64Þ
where rtolj
> 0 and atolj

> 0 are user-defined (vector) parameters specifying the relative and absolute reduction thresholds
with respect to the total variation of the state variable over the time interval, and these values are used to form a threshold
vector e.

In (64), both the index T and DnrðxHÞ need to be determined. Given that the projected value x has to lie on an NT -dimen-
sional slow subspace, i.e., x should satisfy (63), then DnrðxHÞ can be estimated as Dnr

SIMðxHÞ obtained from (60). Subsequently,
(64) becomes
XN

r¼Tþ1

aj
rðxHÞðBrðxHÞJðxHÞArðxHÞÞ�1BrðxHÞfðxHÞ












 < ejðxHÞ: ð65Þ
A further simplification can be considered involving the replacement of the full matrix ðBrðxHÞJðxHÞArðxHÞÞ�1 with a diagonal
matrix whose entries are the reciprocal of the real part of the eigenvalues of JðxHÞ, that is
ðBrðxHÞJðxHÞArðxHÞÞ�1 � DkðxHÞ � diag
1

krðxHÞ

� �
: ð66Þ
The quest of achieving the largest degree of reduction satisfying a user-prescribed tolerance amounts to searching for the
smallest T which satisfies the inequality (65). This search can be accomplished with the following algorithm:
simplicity, we assume that hSIMðxÞ and hASIMðxÞ are graphs of functions.
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M ¼ N þ 1;
Label[200];
M ¼ M � 1;
DrðxHÞ ¼ �ArðxHÞDkr ðxHÞBrðxHÞfðxHÞ;
If maxj¼1;NfjDrjðxHÞj � ejðxHÞg > 0; T ¼ M þ 1; Return½T�;
If M > 1, Goto[200];
If M ¼ 1; T ¼ M; Return½T�;

where T ¼ TðxHÞ and NT ¼ N � T is the dimension of Rs at xHðtnþ1Þ. The case of complex eigenvalues requires a special treat-
ment.3 The actual implementation of this algorithm resorts to a bisection search which becomes more efficient than the sequen-
tial search described above when N is large.

Remark 8. The structural error �SIM and the user-defined error e need to satisfy the inequality
3 The
jej > �SIM � Oð�q
s Þ ð67Þ
to achieve model reduction, that is to satisfy (65) with T < N. To satisfy the above inequality, either rtol and atol have to be
increased (and accept a lower accuracy in the model) or the quality of the basis vectors have to be improved.

Remark 9. The inequality (65) enables the identification of the dimension NT on the basis of a tolerance requirement. How-
ever, NT might be prescribed by specifying that time scales smaller than a prescribed threshold smin should not be considered
in the slow dynamics, or that T not be larger than a prescribed threshold Tmax. The solution thus found will have a variable
accuracy but will describe only time scales above the enforced time-scale threshold smin. The use of the G-Scheme in such
manner provides the opportunity to generate a static reduced model.

While the ordering or the time scales is established on the basis of the (absolute) magnitudes of the (possibly complex)
eigenvalues, the decision regarding the dimension of the fast subspace is carried out on the basis of the fast mode ampli-
tudes. An explosive mode with a non-vanishing amplitude will drive out of equilibrium all modes (both dissipative and
explosive) associated with time scales slower than its own. Thus, an explosive mode will always be found in the active sub-
space (most likely associated with the fastest active scale). On the other hand, the ordering (36) allows us to identify the
slow/invariant subspaces in a very elegant way as those having the smallest/zero time scale magnitudes.

If the problem develops a number of fast scales (real negative eigenvalues) separated from the active scales by a large
spectral gap, then the amplitudes of these fast modes will eventually vanish on a time scale of the order of sT . At this epoch,
the G-Scheme recognizes this circumstance and exploits it to reduce the number of equations to solve. As noted above, the
emergence of an explosive mode with a time scale within this fast subspace will immediately force a reduction of the fast
subspace dimension and a commensurate increase of the active subspace dimension.

2.8. Ideal fast reduced model

We assume that the tangent space Tx can be decomposed into the invariant, E, slow, Sr , and fast Rr , subspaces:
Tx ¼ E� Sr � Rr:
Following Fenichel’s theory [20], from each point x on Sr , with dimðSrÞ ¼ NH , emanates a fast fiber FðxÞ, such that any initial
condition xðtnÞ 2FðxÞ will relax along FðxÞ to Sr , if Sr is normally hyperbolic in x. Given the slow/fast system decomposi-
tion (17), it follows that the state evolution over the time interval Xr is given by xðtÞ ¼ xðtnÞ þ DsðsÞ þ DrðsÞ, with xðtÞ 2FðxÞ
for s 2 Xr , with Xr ¼ ð0;Dtr �;Dtr � 1=jkNj, and tnþ1 ¼ tn þ Dtr . In the ideal case of perfect decoupling, the matrix ArðxðtÞÞ spans
the tangent space TxðtÞFðxÞ.

The evolution of the slow coordinates for s 2 Xr , in case of ideal slow/fast decoupling, is given by (33) with p ¼ s. If we
look for an estimate of the contribution of the slow dynamics along the fast fiber, we can neglect the rotation of the basis
during the time interval so that from (35) we can estimate (to second-order accuracy) the evolution of the state vector along
the fast fiber. Subsequently, we have� �
xðsÞ � xðtnÞ þ sAsð0ÞBsð0Þ I þ 1
2

Ks
sðxðtnÞ; 0Þs fðxðtnÞÞ þ Arð0ÞDnrðsÞ; ð68Þ
where DnrðsÞ is found, in the case of complete slow/fast decoupling, by solving the set of non-stiff ODE’s in (31), whose solu-
tion is given formally by (33) with p ¼ r.

To summarize, the ideal change of coordinates is such that along a fast fiber:

1. the rates of change of DnrðsÞ occur on time scales related to the matrix Kr
rðxðtnÞ; sÞ;

2. the controlling fast time scale is the fastest scale in Kr
rðxðtnÞ; sÞ;

3. along the fast fiber passing through the state point xðtnÞ, the contribution of the NH (slow) coordinates is approximately
accounted for by (68).
contribution of a complex pair of eigenvalues needs to be formed before making the comparison with the threshold vector e.



2.9. Numerical integration of the fast reduced model
A numerical integration scheme of the fast reduced model can be obtained by neglecting the linear coupling terms in (19),
and by requiring that the fast evolution of the state vector xðtÞ satisfies the linear embedding (17) valid for s 2 Xr .
Thus,
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DnsðsÞ ¼ sBsð0Þ I þ 1
2

Ks
sðxðtnÞ;0Þs

� �
fðxðtnÞÞ; ð69Þ

dAsðsÞ
ds

¼ GradxAsðsÞfðxðtnÞ þ AsðsÞDnsðsÞ þ ArðsÞDnrðsÞÞ;

Asð0Þ ¼ AsðxðtnÞÞ; ð70Þ
dArðsÞ

ds
¼ GradxArðsÞfðxðtnÞ þ AsðsÞDnsðsÞ þ ArðsÞDnrðsÞÞ;

Arð0Þ ¼ ArðxðtnÞÞ; ð71Þ
dDnr

ds
¼ BrðsÞfðxðtnÞ þ AsðsÞDnsðsÞ þ ArðsÞDnrðsÞÞ � BrðsÞdArðsÞ

ds
DnrðsÞ;

Dnrð0Þ ¼ 0r: ð72Þ
Subsequently, we have
xðtnþ1Þ ¼ xðtnÞ þ AsðDtrÞDnsðDtrÞ þ ArðDtrÞDnrðDtrÞ: ð73Þ
Eq. (73) indicates that along a fast fiber, and during a time interval Xr , the state evolution is affected by both the fast and slow
time scales. To evaluate the fast time scales contribution requires the integration of (72), whereas the slow time scales con-
tribution can be accounted for (to second-order accuracy) by the algebraic expression (69).

2.9.1. Numerical integration of the fast dynamics
The reduced model (69)–(71), (73) can be solved to different levels of approximation. To leading order, one can assume

that the basis vectors in the time interval Xr do not change much, with their value near that at s ¼ 0, that is
AiðsÞ � Aið0Þ so that BiðsÞ � Bið0Þ; for i ¼ 1; . . . ;N; ð74Þ
which implies that the rotation of the basis vectors in the time interval Xr is negligible:
dAiðsÞ
ds

� 0 for i ¼ 1; . . . ;N: ð75Þ
Subsequently, (69)–(71), (73) reduce to
DnsðsÞ ¼ sBsð0Þ I þ 1
2

Ks
sðxðtnÞ;0Þs

� �
fðxðtnÞÞ; ð76Þ

dDnr

ds
¼ Brð0ÞfðxðtnÞ þ Asð0ÞDnsðsÞ þ Arð0ÞDnrðsÞÞ;

Dnrð0Þ ¼ 0r ð77Þ

and
xðtnþ1Þ ¼ xðtnÞ þ Asð0ÞDnsðDtrÞ þ Arð0ÞDnrðDtrÞ: ð78Þ
Eq. (77) is nonlinear and non-stiff. It can be solved with any explicit integration scheme of any order of accuracy. Within the
time interval Xr an inner variable time step of integration can be used to ensure a prescribed solution accuracy.

2.9.2. Contribution of slow time scales
Eq. (77) implies that, even in case of perfect decoupling, the time rates of change of the fast coordinates depend on both

the slow and fast contributions. This is different than in (57), where the time rate of change of the slow coordinates depends
on the slow contributions only. For reasons that will become apparent, this lack of ‘‘symmetry” between the fast and slow
reduced models will adversely affect the formulation of the final algorithm. Therefore, we make one additional approxima-
tion in the definition of the fast reduced model. On the time scale in which the fast modes evolve, sN ¼ 1=jkN j, we can neglect
the slow coordinates contribution in the linear embedding for the fast system since
�H�N �
jkH�1j
jkN j

	 1: ð79Þ
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Thus,
xðsÞ ¼ xðtnÞ þ Arð0ÞDnrðsÞ ð80Þ
and the following form of the fast reduced system results:
dDnr

ds
¼ Brð0ÞfðxðtnÞ þ Arð0ÞDnrðsÞÞ;

Dnrð0Þ ¼ 0r
ð81Þ
with
xaðtnþ1Þ ¼ xðtnÞ þ Arð0ÞDnrðDtrÞ: ð82Þ
However, since we ignored the slow coordinate contributions during the integration of (81), we apply a correction using (35)
with p ¼ s to xaðtnþ1Þ so as to find the state xðtnþ1Þ on the fast fiber:
xðtnþ1Þ ¼ xaðtnþ1Þ þ Asð0ÞDns
FFðDtrÞ; ð83Þ
where
Dns
FFðDtrÞ ¼ DtrB

sð0Þ I þ 1
2

Ks
sðxðtnÞ; 0ÞDtr

� �
fðxðtnÞÞ: ð84Þ
2.10. Fast reduced model dimension

We will discuss how to define the slow subspace dimension NH of Sr at some state xH. The slow subspace Sr involves time
scales whose contribution to the system dynamics over Dtr , can be approximately accounted for by (84). A measure of the
error can be obtained by considering the magnitude of the second-order term in (84). The criterion used to identify the slow
subspace dimension NH involves finding the largest integer between Eþ 1 and N for which the magnitude of the second-or-
der term is smaller than a user-defined tolerance, that is:
1
2

Dt2
r

XH�1

s¼Eþ1

aj
sðxHÞBsðxHÞKs

sðxH;0ÞfðxHÞ












 < rtoljjxH;jj þ atolj ¼ ejðxHÞ: ð85Þ
A further simplification can be safely considered which involves replacing the full matrix Ks
sðxH; 0Þ with a diagonal matrix

whose entries are the real part of the eigenvalues of JðxHÞ, that is
Ks
sðxH;0Þ � Dks ðxHÞ � diag½ksðxHÞ�: ð86Þ
Thus, because of (86) and since jksj 6 jkH�1j for s ¼ Eþ 1; . . . ;H � 1, the inequality (85) simplifies to
1
2

Dt2
r

XH�1

s¼Eþ1

ksðxHÞaj
sðxHÞBsðxHÞfðxHÞ












 6 1

2
�H�N Dtr

XH�1

s¼Eþ1

aj
sðxHÞBsðxHÞfðxHÞ












 < ejðxjÞ: ð87Þ
The search for the largest H which satisfies (87) can be accomplished with the following algorithm:

M ¼ Eþ 1;
Label[200];
M ¼ M þ 1;
Ds2 ¼ 0:5Dt2

r AsðxHÞBsðxHÞDks ðxHÞfðxHÞ;
If maxj¼1;N jDsj

2j � ej
n o

> 0;H ¼ M � 1; Return½H�;
If M < N, Goto[200];
If M ¼ N;H ¼ M; Return½H�;

where NH ¼ H � E� 1 is the dimension of Sr at state xH.

3. The G(rappa)-Scheme

Up to this point we have discussed the formulations of the slow and fast reduced models, along-with details of the
numerical approximations, by considering the separate asymptotic forms of the slow and fast dynamics of (1). However,
in the most general situation, a dynamical system will develop both very-slow (dormant or near-frozen) and very-fast (or
near-equilibrium) time scales. Thus, it is reasonable to look for a reduced model which can simultaneously exploit the reduc-
tion stemming from the occurrence of both very-slow and very-fast time scales. The G-Scheme in fact consists of an effective
implementation of the merging of the slow and fast reduced models. It should be noted that the exact solution of the com-
plete system of equations will contain all time scales inherent in the system, albeit a finite number in the case of ODEs, or a
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countably-infinite number in the case of non-singular PDEs. For any arbitrary but fixed accuracy, in general there are slow
and fast time scales whose dynamics are negligible and thus these modes are not dynamically active. Nevertheless, these
near-frozen and near-equilibrium modes cannot be ignored since they play crucial roles, and thus their influence couple with
those of the active modes.

3.1. Combined slow and fast reduced models

From Section 2.6, the slow reduced model over a time scale s 2 Xs can be cast as:
Dnc � 0c; c ¼ 1; . . . ; E;

dDns

ds
– 0s with Dnsð0Þ ¼ 0s; s ¼ Eþ 1; . . . ; T;

Dnr
SIM 	 1r ; r ¼ T þ 1; . . . ;N

ð88Þ
and
xðtnþ1Þ ¼ xðtnÞ þ AsðDtsÞDnsðDtsÞ þ ArðDtsÞDnr
SIMðDtsÞ; ð89Þ
whereas from Section 2.9, the fast reduced model over a time scale s 2 Xr can be cast as:
Dnc � 0c; c ¼ 1; . . . ; E;

Dns
FF 	 1s; s ¼ Eþ 1; . . . ;H � 1;

dDnr

ds
– 0r with Dnrð0Þ ¼ 0r ; r ¼ H; . . . ;N

ð90Þ
and
xðtnþ1Þ ¼ xðtnÞ þ ArðDtrÞDnrðDtrÞ þ AsðDtrÞDns
FFðDtrÞ: ð91Þ
Subsequently, both the slow and fast asymptotic forms can be applied to derive an appropriate reduced model of the ori-
ginal singularly perturbed problem. In general, the integers T and H � 1, as defined by applying the algorithms in Sections 2.7
and 2.10 that determine the dimensions of the slow and fast systems, respectively, do not coincide. This implies that a range
of intermediate time scales associated with indices between H and T are too slow/fast to be included in the fast/slow sys-
tems, that is, their contribution to the system dynamics cannot be accounted for by asymptotics. The time scales between
H and T (edges included) will be referred to as active time scales that are characteristics of all processes in the active subspace
A ¼ Ss

T
Rr . With this notation, we can combine (88)–(91) to obtain the set of ODEs in this subspace in terms of the curvi-

linear coordinates Dni, with i ¼ 1; . . . ;N, which is valid for a time scale s 2 X, with X ¼ ð0;Dt�, and Dt � 1=jkT j:
Dnc � 0c; c ¼ 1; . . . ; E; ð92Þ
Dnh

FF 	 1h; h ¼ Eþ 1; . . . ;H � 1; ð93Þ
dDna

ds
¼ BaðsÞfðxðtnÞ þ AaðsÞDnaðsÞÞ with Dnað0Þ ¼ 0a; a ¼ H; . . . ; T; ð94Þ

Dnt
SIM 	 1t ; t ¼ T þ 1; . . . ;N ð95Þ
and
xðtnþ1Þ ¼ xðtnÞ þ AhðDtÞDnh
FFðDtÞ þ AaðDtÞDnaðDtÞ þ AtðDtÞDnt

SIMðDtÞ: ð96Þ
By construction, the state vector xðtnþ1Þ found by expression (96) preserves the E invariants of the problem.
Eq. (93) represents slow variations of nearly invariant quantities, thus it can be thought of as a constraint having a nature

similar to that exercised by (92), albeit slowly changing in time. The processes controlling the slow dynamics have a signif-
icant effect on system variations occurring over long periods of time (e.g. slow modulations of amplitude oscillations).

Eq. (95) represents an equation of state. When the basis vectors at spanning the fast subspace do not change much in
time, then (95) is used to approximate the perturbations of ðN � NTÞ ‘‘minor” (steady state, CSP radicals, etc.) state variables
as functions of the rates of perturbations of NA ‘‘major” variables to generate a ‘‘static” reduced model, in the same vein as the
classic QSSA and/or PEA approximations. The processes controlling the fast dynamics have a significant effect on the long
term evolution of the system, since they are responsible for the emergence of SIMs.

Finally, the set of ODEs (94) represents the non-stiff time evolution of the active (‘‘lumped”) state variables. The processes
controlling the active dynamics have a significant effect on system variations occurring over the driving time scale.

Remark 10. The spectral distance �H�T (see (40)) between the fastest of the slow time scales and the active time scale shows
that the contribution of the slow scales can be accurately accounted by (93) (see (84) with s! h) whenever �H�T 	 1. Clearly
this is the case when �H 	 1; however, in most cases, �H�T 	 1 even when �H < 1.
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Remark 11. Indices similar or identical to those introduced in the CSP method to carry out a time scale-aware sensitivity
analysis, can be used with minor modifications (slow, fast, and active ‘‘G-Scheme” participation and importance indices,
‘‘G-Scheme” pointers to slow, fast, and active variables/species) to extract from the G-Scheme-generated solutions informa-
tion useful for parameter identification and mechanism simplification. This is a subject of ongoing investigation.

With reference to (92)–(96), the G-Scheme thus consists of: (i) the solution of NA non-stiff ODEs (94) to obtain xaðtnþ1Þ,
constrained by the linear embedding xðtÞ ¼ xðtnÞ þ AaðsÞDnaðsÞ, which describes the finite rate evolution of all the active pro-
cesses, and (ii) application of the asymptotic corrections, the slow correction Dnh

FF first, which accounts for the contribution of
slow scales in the subspace H, and the fast correction Dnt

SIM next, which accounts for the contribution of fast scales in the
subspace T, thus ensuring that the state variable lies on the proper SIM.

The active ODEs are non-stiff because the right-hand side of (94) is obtained by projecting the vector field onto the active
subspace A, effectively filtering out both very-fast and very-slow time scales. Moreover, if we define the stiffness of the ori-
ginal system as S ¼ jkN j=jkEþ1j, with reference to the ordering defined in (36), then the stiffness of the active ODEs is
SA ¼ jkT j=jkHj, so that SA 	 S. The ratio S=SA provides an estimate of the degree of stiffness reduction.

It should be noted that both asymptotic corrections will involve a phase error directly proportional to the magnitude of
the integration time step and inversely proportional to the spectral gap �T and the spectral distance �H�T . Numerical tests
confirm that the G-Scheme always yields an accurate solution that is consistent with the degree of reduction of active modes.
As will be illustrated, the realm of application of the scheme is very large. The G-Scheme,4 in effect, is a new adaptive reduction
framework that we hope will enable us to tackle challenging problems without the need of preliminary analysis of any type.

3.2. The G-Scheme framework step-by-step

The algorithmic steps of the G-Scheme framework will be described in this section with reference to Fig. 1. We will use
indices i ¼ 1; . . . ;N; a ¼ H; . . . ; T;h ¼ Eþ 1; . . . ;H � 1, and t ¼ T þ 1; . . . ;N. We wish to find a numerical solution for t 2 ðt0; tf �
with given initial condition xðt0Þ ¼ x0.

We initialize the calculation by prescribing that Tðxðt0ÞÞ ¼ N, and compute Jðxðt0ÞÞ; kiðt0Þ ¼ kiðxðt0ÞÞ;Aðt0Þ ¼ Aðxðt0ÞÞ and
Bðt0Þ ¼ Bðxðt0ÞÞ. Next, for each time interval tn ðs ¼ 0Þ, and for the state vector xðtnÞ, with n ¼ 0;1;2; . . ., we proceed as
follows:

1. Define the time step as:
4 The
followe
respect
the Hea
Dt ¼ c=jkTðxðtnÞÞj; c 6 1; ð97Þ
2. Update time:
tnþ1 ¼ tn þ Dt; ð98Þ
3. Find HðxðtnÞÞ since, as discussed in Section 2.10, it depends on Dt;
4. Solve the set of non-stiff ODE’s for s 2 X ¼ ð0;Dt�:
dDna

ds
¼ BaðtnÞfðxðtnÞ þ AaðtnÞDnaðsÞÞ; Dnað0Þ ¼ 0a; ð99Þ
5. Update state vector:
xaðtnþ1Þ ¼ xðtnÞ þ AaðtnÞDnaðDtÞ; ð100Þ
6. Apply head correction:
xhðtnþ1Þ ¼ xaðtnþ1Þ þ AhðtnÞDnh
FFðDtÞ; ð101Þ
where the head correction is estimated as:
Dnh
FFðDtÞ ¼ Dt BhðtnÞ I þ 1

2
Kh

hðxðtnÞ; tnÞDt
� �

fðxðtnÞÞ; ð102Þ
7. Apply tail correction to project the solution onto the fast subspace obtained using the bases at tn:
xtðtnþ1Þ ¼ xhðtnþ1Þ þ AtðtnÞDnt
SIMðtnÞðDtÞ; ð103Þ
where the tail correction is estimated as:
Dnt
SIMðtnÞðDtÞ ¼ �ðBtðtnÞJðxðtnÞÞAtðtnÞÞ�1BtðtnÞfðxhðtnÞÞ; ð104Þ
G in the G-Scheme originates from the similarity between the action of discarding the fast and slow scales in the scheme with the distillation process
d in the production of Grappa, an italian liquor. The first and third fractions of the vapors distilled by fermented grapes, named Head and Tail
ively, are contaminated by poisonous alcohols and thus discarded; only the second fraction, the Heart, yields the Grappa. Thus, the active time scales are
rt of the problem, c.v.d.



Fig. 1. The G-Scheme step-by-step starting from a given state xðtnÞ on a subspace of dimension evaluated at tn: orange stars denote intermediate new states
before the application of head or tail corrections, the blue circle denotes the new state after head and tail corrections onto the subspace evaluated at tn and
where the basis vectors are subsequently updated to tnþ1, orange circle denotes the new state xðtnþ1Þ and the location where the subspace dimension
possibly changes. Note that in reality the orange circles are not exactly on the SIM; we are actually calculating the ASIM. We do not show both the SIM and
ASIM so as not to make the figure unduly complex. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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8. Update Jðxtðtnþ1ÞÞ; kiðtnþ1Þ ¼ kiðxtðtnþ1ÞÞ, and the set of new basis vectors Aðtnþ1Þ ¼ Aðxtðtnþ1ÞÞ and Bðtnþ1Þ ¼ Bðxtðtnþ1ÞÞ;
9. Apply bases rotation correction if necessary (i.e., if the fast subspace changes) to find the state xðtnþ1Þ by projecting

xtðtnþ1Þ located on the manifold evaluated at tn onto the manifold evaluated at tnþ1:
xðtnþ1Þ ¼ xtðtnþ1Þ þ Aðtnþ1ÞDnSIMðtnþ1ÞðDtÞ; ð105Þ
where the basis rotation correction is estimated as:
DnSIMðtnþ1ÞðDtÞ ¼ �ðBtðtnþ1ÞJðxtðtnþ1ÞÞAtðtnþ1ÞÞ�1Btðtnþ1Þfðxtðtnþ1ÞÞ; ð106Þ
10. Find Tðxðtnþ1ÞÞ as discussed in Section 2.7;
11. Update counter: n ¼ nþ 1;
12. If ½tnþ1 < tf � go back to step (1).

The choice of the safety factor c has an impact on the local error of the solution, given that Dt ¼ cOðsp
TÞ where p is the

formal order of accuracy of the quadrature scheme adopted to integrate (99).

Remark 12. Step (9) is essential in the G-Scheme as it accounts for a correction that projects the new solution, xtðtnþ1Þ, from
a fast subspace obtained using the old bases to the one obtained with the new bases. Thus, from now on, when we say that
we apply a tail correction, the basis rotation correction, if necessary, is included with it; i.e., it is considered to be part-and-
parcel of the tail correction.

Remark 13. From the above presentation it is apparent that the numerical solution generated by the G-Scheme approxi-
mates the trajectory of the original system by patching together trajectories obtained with reduced order models, each lying
on the corresponding SIM. All the trajectories describing the transients between different SIMs in the original system
(together with the associated fast scales) are not represented by the G-Scheme-generated solution, since their overall contri-
bution to the system dynamics is accounted for by projection operations (tail corrections).

Remark 14. For PDEs, N can be varied between time steps. Indeed this is natural if the G-Scheme is used as a solver within a
spatially adaptive scheme.



M. Valorani, S. Paolucci / Journal of Computational Physics 228 (2009) 4665–4701 4681
3.2.1. Higher-order form of the reduced model
In (99) one can retain the linear terms accounting for the rotation of the basis vectors:
dDna

ds
¼ BaðsÞfðxðtnÞ þ AaðsÞDnaðsÞÞ � BaðsÞdAaðsÞ

ds
DnaðsÞ: ð107Þ
Eq. (107) can be solved using a predictor/corrector approach. A measure of the magnitude of the rotation of the basis vectors
is provided by jd lnðJ=jJjÞ=dtj, which in turn measures the significance of nonlinearities. In addition, it is also possible to ac-
count for off-diagonal (coupling or ‘‘contamination”) terms within a linear approximation.

3.2.2. Higher-order estimate of the basis vectors
As noted earlier, the basis vectors used in the reduced model can be found by resorting to the CSP vectors. Their leading

order approximation is obtained by considering the eigenvectors of the Jacobian matrix of the vector field. Higher-order
approximations can be found by applying one or more CSP refinements. It is conjectured that in most circumstances the
higher accuracy in the identification of the basis vectors, which, by itself, is such to provide a cleaner decoupling between
the slow and fast subspaces, will not translate in an increased efficiency of the scheme to an extent which will compensate
for the additional work inherent with the application of the CSP refinements. Instead, one promising option, as indicated in
step (9), is to compute the local basis vectors as perturbations of the previously computed basis vectors, again by resorting to
a simplified version of the CSP refinements.
4. Illustration of the G-Scheme for a planar ODE model

In this section, we illustrate the main steps of the G-Scheme as it applies to a test model featuring a stiff and non-normal
linear behavior, described by the following two-dimensional system:
�
dy
dt
¼ cscðh� wÞðcosðhÞðzð�� 1Þ cosðwÞ þ y sinðwÞÞ � y� cosðwÞ sinðhÞÞ;

�
dz
dt
¼ cscðh� wÞððz� cosðhÞ � yð�� 1Þ sinðhÞÞ sinðwÞ � z cosðwÞ sinðhÞÞ;

ð108Þ
where the state vector is defined as x ¼ ðy; zÞ, the vector field fðy; z; w; h; �Þ is defined by the right-hand side of (108), and
� < 1 is the spectral gap; by construction, the eigenvalues of the Jacobian matrix of the right-hand sides of (108) are
k1 ¼ �1 and k2 ¼ �1=�; the corresponding right eigenvectors are a1ðhÞ ¼ ðcosðhÞ; sinðhÞÞ and a2ðwÞ ¼ ðcosðwÞ; sinðwÞÞ. The
slow and fast time scales are given respectively by s1 ¼ 1 and s2 ¼ �. The difference jh� wj measures the angle between
the two eigen-directions (or the non-normality of the system).

Let us introduce the Cartesian fDx1;Dx2g and curvilinear fDn1;Dn2g coordinates, slow and fast respectively, for the per-
turbation vector Dx. Application of the transformation (5) yields:
Dn1 ¼ þ cscðw� hÞðDz cosðhÞ � Dy sinðhÞÞ;
Dn2 ¼ � cscðw� hÞðDz cosðwÞ � Dy sinðwÞÞ:

ð109Þ
Subsequently, the fast perturbation vector is
DrðDn2; hÞ ¼
cosðhÞ
sinðhÞ

� �
Dn2; ð110Þ
from which it is apparent that Dr is parameterized by the fast coordinate Dn2, and that the slow coordinate Dn1 plays no role.
Furthermore, the slow perturbation vector is given by
DsðDn1; wÞ ¼
cosðwÞ
sinðwÞ

� �
Dn1 ð111Þ
from which it is apparent that Ds is parameterized by the slow coordinate Dn1, and that the fast coordinate Dn2 plays no role.

4.1. The slow system

The slow system describes the evolution of the slow coordinate Dn1 along the SIM and for s 2 ð0;Dts�, with
Dts � Oðs1 ¼ 1Þ, reads:
dDn1

ds
¼ cscðw� hÞðy sinðhÞ � z cosðhÞÞ � Dn1;

Dn1ð0Þ ¼ 0
ð112Þ
showing that it is decoupled from the fast coordinate Dn2. Given the linearity of (108), (112) is also linear with respect to Dn1;
of course, this circumstance is not typical of nonlinear systems.
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The linear embedding of the slow system (53), specialized for this model and for s 2 ð0;Dts�, reads:
xaðtÞ ¼ xþ DsðsÞ ¼
y

z

� �
þ

cosðwÞ
sinðwÞ

� �
Dn1ðsÞ: ð113Þ
The exact solution of (112) is
Dn1ðsÞ ¼ �e�sð�1þ esÞ cscðw� hÞðz cosðhÞ � y sinðhÞÞ; ð114Þ
which, after replacement in the linear embedding (113), yields the solution of the slow dynamics
xaðtÞ ¼
y

z

� �
� e�sð�1þ esÞ cscðw� hÞðz cosðhÞ � y sinðhÞÞ

cosðwÞ
sinðwÞ

� �
: ð115Þ
Note that the solution of the slow dynamics (115) contains only the slow time scale s1 ¼ 1 and therefore is non-stiff.

4.2. The fast correction

The amplitude of the fast mode is a state function and reads:
f 2ðx; w; h; �Þ ¼ a2ðwÞ � fðx; w; h; �Þ ¼ 1
�

cscðw� hÞðz cosðwÞ � y sinðwÞÞ: ð116Þ
The SIM is found by enforcing (46), and in this case has an exact representation which in implicit form is given by
f 2ðx; w; h; �Þ ¼ 0 ¼ z cosðwÞ � y sinðwÞ: ð117Þ
The fast correction magnitude Dn2
SIMðxÞ provided by (60) is a state function and, in this case, is independent of �:
Dn2
SIMðx; w; hÞ ¼ s2 f 2ðx; w; h; �Þ ¼ cscðw� hÞðz cosðwÞ � y sinðwÞÞ: ð118Þ
The fast correction vector provided by
a2Dn2
SIM ¼ cscðw� hÞðz cosðwÞ � y sinðwÞÞ

cosðhÞ
sinðhÞ

� �
ð119Þ
is a state function independent of �. Adding this contribution to the solution of the slow dynamics (61) yields the complete
solution of the slow system
xðtÞ ¼ xaðtÞ þ a2Dn2
SIM;

¼ y
z

� �
þ cscðw� hÞðz cosðwÞ � y sinðwÞÞ cosðhÞ

sinðhÞ

� �
þ e�sð1� esÞ cscðw� hÞðz cosðhÞ � y sinðhÞÞ cosðwÞ

sinðwÞ

� �
: ð120Þ
It is instructive to consider the trajectories obtained for s 2 ð0; s2 ¼ �� with the slow reduced model (120) and the slow
dynamics (without fast correction) (115), and compare them with the exact solution of (108). This is done in Fig. 2 for
w ¼ p=7; h ¼ p=9, and � ¼ 10�2. The initial condition for the three cases is the same fz0 ¼ 3; y0 ¼ z0 cotðwÞ � �g and is �-close
to the SIM. It is apparent that the exact solution (blue) approaches the SIM (black line) at the fast rate s2 ¼ � ¼ 10�2. The slow
reduced model (120) (red) is forced to lie on the SIM because of the fast correction; in fact, it is well known that initial con-
ditions of a reduced model cannot be arbitrarily prescribed since they should satisfy the algebraic constraint which defines
the reduced model itself.

The error of the slow reduced model can be estimated by the L2-norm between the exact solution xex and x:
kxðtÞ � xexðtÞk2 ¼ e�t=�fj cosðhÞ cscðh� wÞðz cosðwÞ � y sinðwÞÞj2 þ j cscðh� wÞ sinðhÞðy sinðwÞ � z cosðwÞÞj2g1=2
: ð121Þ
As indicated by (121), the error decreases at the fast rate, and on the fast scale (from the right- to the left-edges of the tra-
jectories the time elapsed is s2 ¼ �) has almost vanished. This indicates that the error associated with the application of the
slow reduced model is mostly confined to an initial transient, having a duration of the order of the fast time scale, which is
triggered any time that the fast subspace dimension undergoes a sudden increase, this implying a projection of the state vec-
tor on a SIM of lower dimension. The slow dynamics without fast correction (120) is clearly not attracted to the SIM, since its
trajectory remains parallel to it, and possibly would result in the attainment of an incorrect fixed point. Indeed, this non-van-
ishing error is due to an incorrect choice of initial condition (not lying on the SIM) for the slow dynamics. This simple analysis
demonstrates the necessity of enforcing the fast correction to define a consistent slow reduced model.

4.3. The fast system

The fast system describes the evolution of the slow coordinate Dn2 along a fast fiber, and for s 2 ð0;Dtr �, with Dtr � s2 ¼ �,
reads:



Fig. 2. Trajectories obtained for s 2 ½0; s2 ¼ ��;w ¼ p=7; h ¼ p=9; � ¼ 10�2, and initial condition fz0 ¼ 3; y0 ¼ z0 cotðwÞ � �g: slow reduced model (120) (dash
red line), slow dynamics (without fast correction) (115) (short-dash green line), exact solution of (108). (short-long-dash blue line), and SIM (solid black
line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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dDn2

ds
¼ 1
�
ðcscðw� hÞðz cosðwÞ � y sinðwÞÞ � Dn2;

Dn2ð0Þ ¼ 0
ð122Þ
showing that it is decoupled from the slow coordinate Dn1. Given the linearity of (108), (122) is also linear with respect to
Dn2.

The linear embedding of the fast system (80) specialized for this model reads:
xaðtÞ ¼ xþ DrðsÞ ¼
y

z

� �
þ

cosðhÞ
sinðhÞ

� �
Dn2ðsÞ: ð123Þ
The exact solution of (122) is
Dn2ðsÞ ¼ ð1� e�s=�Þ cscðw� hÞðz cosðwÞ � y sinðwÞÞ; ð124Þ
which, after replacement in the linear embedding, yields the solution of the fast dynamics:
xaðtÞ ¼
y

z

� �
þ ð1� e�s=�Þ cscðw� hÞðz cosðwÞ � y sinðwÞÞ

cosðhÞ
sinðhÞ

� �
: ð125Þ
Note that this solution is not stiff since it contains only the fast time scale s2 ¼ �.

4.4. The slow correction

The evolution of the state vector along the fast fiber can be obtained as in (68) by taking the leading order term of (35).
However, one can consider adding higher-order terms. In the following we will compare the accuracy of the first- and sec-
ond-order approximations.

4.4.1. First order
The fast fiber correction to leading order reads
Dn1
FF;1ðx; s; w; hÞ ¼ s cscðw� hÞðy sinðhÞ � z cosðhÞÞ: ð126Þ
The slow correction is different from the fast correction (116) in that it is not a state function but depends on s. The slow
correction vector
a1Dn1
FF;1ðsÞ ¼ s cscðw� hÞðy sinðhÞ � z cosðhÞÞ

cosðwÞ
sinðwÞ

� �
ð127Þ
is independent of �. Adding this contribution to the solution of the fast dynamics (125) yields the complete solution of the
fast system, which reads
x1ðtÞ ¼ xaðtÞ þ a1Dn1
FF;1ðsÞ;

¼
y

z

� �
þ s cscðw� hÞðy sin ðhÞ � z cosðhÞÞ

cosðwÞ
sinðwÞ

� �
þ ð1� e�s=�Þ cscðw� hÞðz cosðwÞ � y sinðwÞÞ

cosðhÞ
sinðhÞ

� �
:

ð128Þ
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Note that this solution does depend on the spectral gap �. The error of the fast reduced model with a first-order accurate slow
correction can be estimated by the L2-norm between the exact solution xex and x1:
kx1ðtÞ � xexðtÞk2 ¼ e�t ½ðetðt � 1Þ þ 1Þ cosðwÞ cscðh� wÞðz cosðhÞ � y sinðhÞÞ�2
n
þe�t ½ðetðt � 1Þ þ 1Þ cscðh� wÞðz cosðhÞ � y sinðhÞÞ sinðwÞ�2

o1=2
: ð129Þ
Clearly the error grows exponentially on the slow scale, and thus this reduced model is sufficiently accurate only for times of
the order of the fast scale.

4.4.2. Second order
The slow correction to second order reads
Dn1
FF;2ðx; s; w; hÞ ¼ 1

2
ðs� 2Þs cscðw� hÞðz cosðhÞ � y sinðhÞÞ: ð130Þ
The corresponding slow correction vector in this case is given by
a1Dn1
FF;2ðsÞ ¼

1
2
ðs� 2Þs cscðw� hÞðz cosðhÞ � y sinðhÞÞ

cosðwÞ
sinðwÞ

� �
: ð131Þ
Adding this contribution to the solution of the fast dynamics (125) yields the complete solution of the fast system to second-
order accuracy of the slow correction:
x2ðtÞ ¼ xaðtÞ þ a1Dn1
FF;2ðsÞ;

¼
y
z

� �
þ 1

2
ðs�2Þscscðw� hÞðz cosðhÞ � y sinðhÞÞ

cosðwÞ
sinðwÞ

� �
þ ð1� e�s=�Þcscðw� hÞðz cosðwÞ � y sinðwÞÞ

cosðhÞ
sinðhÞ

� �
:

ð132Þ
The error of the fast reduced model with a second-order accurate slow correction can be estimated by the L2-norm be-
tween the exact solution xex and x2:
kx2ðtÞ � xexðtÞk2 ¼
1
2

e�t ½ðetðt2 � 2t þ 2Þ � 2Þ cosðwÞ cscðh� wÞðz cosðhÞ � y sinðhÞÞ�2
�

þ1
2

e�t ½ðetðt2 � 2t þ 2Þ � 2Þ cscðh� wÞðz cosðhÞ � y sinðhÞÞ sinðwÞ�2
	1=2

: ð133Þ
Consider the trajectories obtained with the fast reduced models (128) and (132), and the fast dynamics (without slow
correction) (125). Their comparisons with the exact solution of (108) are shown in Fig. 3. The initial condition for the three
cases is the same fy0 ¼ 50; z0 ¼ 50g and is off the SIM. The exact solution (black) evolves at the fast rate s2 ¼ �. The fast re-
duced models (128) and (132) (red and blue) are close, the latter with second-order accuracy being closer to the exact solu-
tion than the former which is first-order accurate, during a time of the order of the fast scale. The fast dynamics without slow
correction (125) (green) not only does not lie close to the exact solution (the error being larger for smaller spectral gaps), but
the end point reaches a value much further to the right because the slow time scale has no means to slow down the purely
fast dynamics.

Lastly, we note that in two-dimensional models, as long as there is one active time scale, then at any specific time only a
head or tail correction to the active dynamics can be applied. A system of dimension three or larger is necessary to be able to
apply both head and tail corrections at the same time.
5. Numerical validation

All reference solutions presented in this section are obtained with the module NDSolve in Mathematica� 6.0, the Auto-
matic method of integration (by default an LSODA approach is used, switching between a non-stiff Adams method and a stiff
Gear BDF method), a precision (or rtol) of 10�10, and accuracy (or atol) of 10�14. The calculations carried out with the G-
Scheme use the explicit Runge–Kutta four-stage scheme (classic ERK4, (1/6;1/3;1/3;1/6)) to integrate the active dynamics,
and, unless otherwise stated, we use rtol ¼ 10�4 and atol ¼ 10�13 in the threshold vector e defined in (64) (and used in
(65) and (87)), and c ¼ 0:9 in (97) unless otherwise noted. We note that the present meanings of rtol and atol as used by
NDSolve and the G-Scheme are somewhat different.

5.1. A planar ODE model

As a test featuring stiff explosive/dissipative nonlinear behavior, we use the Semenov model, which represents the
dynamics of the first-order exothermal batch reaction A! B in a well-stirred jacketed reactor:



Fig. 3. Trajectories obtained for s 2 ½0;5s2 ¼ 5��;w ¼ p=7; h ¼ p=9; � ¼ 0:1, and initial condition fz0 ¼ 50; y0 ¼ 50g: fast reduced models (128) and (132)
(dash red and short-long-dash blue lines), fast dynamics (without slow correction) (125) (short-dash green line), and exact solution of (108) (solid black
line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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dy
dt
¼ e�1f ðy; zÞ and

dz
dt
¼ gðy; zÞ; ð134Þ
where
f ðy; zÞ ¼ gðy; zÞ � dy and gðy; zÞ ¼ z expðy=ð1þ byÞÞ ð135Þ
with parameter values b ¼ 0:21; d ¼ 1:0, and e ¼ 10�3, and initial condition fyð0Þ; zð0Þg ¼ f5;2g. The bifurcation properties of
this model have been studied in [29]. This model problem is aimed at illustrating the operating characteristics of the G-
Scheme.

For this set of parameters the solution proceeds from the initial condition to a fixed point (equilibrium), but with a
dynamics which is fairly complex, as can be seen from the phase trajectory shown in Fig. 4, or from the time evolution of
y shown in Fig. 5. In all figures regarding this model problem, unless noted otherwise, the illustrations on the left are ob-
tained with the time step safety parameter of c ¼ 0:1, while that on the right with c ¼ 0:5, and the log10 scale is used. Clearly
the use of larger c leads to a solution obtained with a much smaller number of time steps at the cost of a somewhat larger
error. The relative errors for the two cases are shown in Fig. 6. It is clear from the figure that the error increases as c increases.
In Figs. 7 and 8 we show the corresponding number of active modes and the values of the head ðHÞ and tail ðTÞ indices. It is
clear from Fig. 7 that most of the time it is only necessary to integrate one ODE; integration of both ODEs is only necessary
the first time step, and near the sharp corners shown in Fig. 4. From Fig. 8 we also see that from right after the initial con-
dition until after the first turn H ¼ T ¼ 2. This indicates that the dynamics is effectively one-dimensional and is controlled by
the fast time scale. Afterwards, with the exception of the period spent in negotiating the second turn, the dynamics is again
effectively one-dimensional, but this time it is controlled by the slow time scale since H ¼ T ¼ 1. All this can be directly con-
firmed by examining Fig. 9 where the size of the time step is shown as a function of time in the two cases. The total number
of time steps necessary to obtain the solutions with c ¼ 0:1 and 0.5 are 318 and 63, respectively.

To illustrate the internal mechanics of the G-Scheme, Fig. 10 shows the phase trajectory obtained by the reduced model
with c ¼ 0:5, and with and without making slow (head) and fast (tail) corrections. Note that in this two-dimensional Seme-
nov model, as long as we have one active mode, then at any time only a head or tail correction to active dynamics can be
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Fig. 4. Reference (line) and computed (points) trajectories in the ðy; zÞ-plane: (left) c ¼ 0:1, (right) c ¼ 0:5.
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applied. Figs. 11 and 12 show greatly enlarged views of the trajectory near the turning points. We see from Fig. 11 that in the
first turn only head corrections are necessary. However, from Fig. 12 we see that small head corrections are applied before
the second turn, while tail corrections are necessary after the turn. In Figs. 11 and 12, the blue arrows identify the state vec-
tor change due to the active time scales, the red/green arrows are parallel to the slow/fast direction and identify the state
vector change due to the application of the head/tail correction, whereas the black arrows refer to the reference solution
evaluated at the same time instants as the G-Scheme solution. The distance between the points of the red and black arrows
or the green and black arrows is the error associated with the particular values of c and rtol used in this calculation. A com-
parison of the plots on the left and right sides of Fig. 11 demonstrates that the addition of the head correction allows to accu-
rately follow the turning of the trajectory in the region where slow scales make important contributions to the dynamics.
Comparing the plots on the left and right side of Fig. 12 demonstrates that the addition of the tail correction allows to project
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Fig. 6. Relative error on y: (left) c ¼ 0:1, (right) c ¼ 0:5.
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onto the SIM the state point obtained by the active ODE. Without tail correction, the G-Scheme will detect that fast time
scales are non-exhausted at the tip of the blue arrow, and will force the integration to proceed with a very small time step
(Fig. 15) until the SIM is reached.

We note, by examining Fig. 13, that while the history of the number of active modes remains essentially the same with
and without correction, the error and the computational cost become larger. That a reasonable solution is still obtained with-
out corrections, testifies to the robustness of the algorithm. A comparison of the errors is shown in Fig. 14, while from Figs.
11, 12 and 15 we see that the ‘‘corrections” in the uncorrected solution is replaced by the integration of the fast dynamics a
number of times after each integration of the slow dynamics.
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Fig. 8. Head H (hollow red circles) and tail T (solid blue circles) indices: (left) c ¼ 0:1, (right) c ¼ 0:5. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Reference (line) and computed (points) trajectories in the ðy; zÞ-plane for c ¼ 0:5: with (left) and without (right) head and tail corrections.
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5.2. A multi-dimensional ODE model

As a test model featuring a complicated nonlinear behavior we consider the isobaric CSTR at very low pressure involving
CO=H2 kinetics proposed by Brad et al. [30]. The kinetic mechanism involves 11 species and 33 reactions. The set of ODEs
involves 11 rate equations and the energy conservation equation for the molar concentrations and temperature representing
the state of the CSTR:
_Ci ¼ xi þ
ðC0

i � CiÞ
tR

; Cið0Þ ¼ C0
i ; for i ¼ 1; . . . ;11; ð136Þ

cpCtot
_T ¼

X
i

C0
i
ðH0

i � HiÞ
tR

�xiHi

 !
þ UðTA � TÞ; Tð0Þ ¼ T0; ð137Þ
where Ci ¼ ðp0=ðRT0ÞÞXi is the molar concentration of species i, p0 is the constant inlet and reactor pressure, Xi is the mole
fraction, T is the reactor temperature, TA is the constant temperature of the surrounding, tR ¼ 8 s is the residence time, Ctot is
the total molar concentration, cp is the specific heat at constant pressure of the mixture, Hi is the molar enthalpy of the i-th
species, U ¼ 1600 J=ðK m3 sÞ is a heat transfer parameter, xi is the rate of production of the ith species, and the zero super-
scripts denote properties evaluated at the inlet conditions. The inlet molar fraction composition is
fX0

H2
;X0

O2
;X0

COg ¼ f0:005;0:5;0:495g for all test conditions, and we take the inlet temperature to be the same as the exterior
temperature, i.e., T0 ¼ TA. The constants in this system, as well as all other constitutive relations, are the same as in [30].

The CSTR is an open system which possesses three invariants, one for each atomic species, with characteristic time scales
equal to tR. These time scales originate from the linear terms in Ci in the balance Eq. (136). This has the effect of shifting the
invariant eigenvalues from 0 to �1; this change is easily handled within the algorithm. We expect that the G-Scheme is able
to identify the invariant subspace C, and compute the contributions to the perturbations of the state variables within the
range NE þ 1 ¼ 3þ 1 ¼ 4 to NT ; i.e., it will force the state variable perturbations to lie in the subspace NC� T.

The dynamics of this system features different types of asymptotic behavior (fixed point, limit cycle, and chaotic attrac-
tor). We will present results relative to three values of fp0; T0g chosen on the basis of the bifurcation diagram produced in
[31], each corresponding to one of the three different qualitative asymptotic behaviors.

5.2.1. Fixed point
The inlet condition for this case is fp0; T0g ¼ f14 Torr;735 Kg. The time evolution of the temperature is shown in Fig. 16,

from which it is apparent that after t > 10�1 the temperature levels off to its stationary value. The figure also shows the rel-
ative error between the temperature evolution computed by the G-Scheme and the reference computed by ND-Solve: the er-
ror is always below 0.1%, this maximum value being reached during the explosive stage, whereas the error drops by several
orders of magnitude during the relaxation towards the fixed point. It is expected that during the period of large temperature
changes, the number of active time scales is large leading to a large number of active ODEs to be solved, whereas at large
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times, under near-equilibrium condition, we expect many exhausted fast time scales and a corresponding, progressive
reduction of active ODEs. The large temperature changes are accompanied by a large rate of change of the Jacobian matrix,
which denotes significant nonlinear effects and large rotations of the basis vectors. These expectations are indeed confirmed
by examining Fig. 17, which shows, more specifically, that the approach to the fixed point proceeds with only one ODE with a
time scale corresponding to a very large integration time step. Also note in Fig. 17, that the relaxation towards the equilib-
rium starts at time t � 10�1:3, where NA ¼ 6; as time advances, NA takes the values 5, 3, and finally 1. Each NA corresponds to
a SIM of equivalent dimension, this indicating that the (slow) approach to equilibrium occurs through a succession of
embedded SIMs.



Š6

Š4

Š20

-2
5 -2
0-1
5 -1 0 -0
5

lo

g t

τ
 

H

lo

Fig. 18.

Evolutions of (left) time step, and (right) head time scale (red

interpretation of the references to color in this figure legend, the reader i

M. Valorani, S. Paolucci / Journal of Co
At time t ¼ 10�0:2 � 0:6, only one active equation corresponding to indices NH ¼ NT ¼ 4 is left, which describes the evo-
lution of Dn4 ¼ b4 � Dx, that is the following linear combination of the state perturbations:
lo
g 

Δ
t

 

g

points), tail time scale (blue points), and all oth

s referred to the web version of this article.)
Dn4 ¼ 0:49DxH þ 1:00DxH2 þ 0:17DxH2O2 þ 0:42DxHCO þ 0:41DxHO2 þ 0:48DxOH:
T

The slow coordinate Dn4 can be interpreted as a single lumped variable that describes the approach to the fixed point of
the system at a characteristic (slow) non-dimensional time scale of s4 ¼ 0:054. Also from Fig. 17 we see that the index of the
head is such that NH P 4, indicating that the calculation proceeds as expected when the contribution of the three invariant
modes is excluded. One can also inquire about the structure of the invariants, by inspecting the specific linear combinations
of the variations of the state perturbations that enter in the three invariants:
Dn1 ¼ �0:065DxCO � 0:056DxCO2 þ 0:49DxH þ 0:98DxH2 þ 0:99DxH2O þ DxH2O2

þ 0:425DxHCO þ 0:51DxHO2 þ 0:0096DxO þ 0:019DxO2 þ 0:5DxOH;

Dn2 ¼ þ0:172DxCO � 0:013DxCO2 þ 0:5DxH þ DxH2 þ 0:81DxH2O þ 0:63DxH2O2

þ 0:67DxHCO þ 0:13DxHO2 � 0:18DxO � 0:37DxO2 þ 0:31DxOH;

Dn3 ¼ þ0:068DxCO þ 0:05DxCO2 þ 0:5DxH þ DxH2 þ 0:98DxH2O þ 0:96DxH2O2

þ 0:57DxHCO þ 0:46DxHO2 � 0:017DxO � 0:035DxO2 þ 0:48DxOH:
Fig. 18(left) shows the time evolution of the integration time step. Clearly, the size of the step increases as the dimension of
the fast subspace increases (T decreases to 4, see Fig. 17). This result demonstrates that the G-Scheme is effective in removing
the stiffness in the problem, thus allowing the slow dynamics to be determined by using the ERK4 scheme without encoun-
tering any numerical instability. In Fig. 18(right), we see how sH and sT evolve in comparison with all other time scales in the
system. The strip comprised of time scales between sH (red points) and sT (blue points) is a pictorial representation of the
active subspace evolution, its narrowing indicating the degree of adaptive reduction provided by the dissipative nature of the
problem and exploited computationally by the G-Scheme. All the time scales faster than sT (below the blue points) contribute
to the development of SIMs of different dimensions, all the time scales slower than sH (above the red points) are ‘‘frozen”
with respect to the active ones.

5.2.2. Limit cycle
To test the G-Scheme under more severe conditions involving a limit cycle behavior, we choose as initial condition

fp0; T0g ¼ f14 Torr;680 Kg. The temperature and relative error evolutions along the periodic orbit are reported in Fig. 19.
Although we do not present additional details on the solution, over each cycle one can note a very-fast ignition phase, where
both T and HO2 peak, followed by a relaxation phase, during which HO2 is consumed, and lastly a new re-generation phase,
during which HO2 is produced, with the latter two phases occurring at nearly isothermal conditions. It can be noted that the
relative error in T is below 1%, this maximum value being attained during the explosive stage, whereas the error drops by
several orders of magnitude during the relaxation and re-generation phases. In addition to observing the periodicity of
the solution in Fig. 19, Fig. 20 demonstrates that the G-Scheme is able to provide repeatable sequences of the tangent space
decomposition, as witnessed by the periodic evolutions of the number of active ODEs and of the fast and slow subspace
dimensions. The embedding dimension of the asymptotic dynamics of the CSTR model along the limit cycle, estimated as
the maxðNAÞ over a period is 6, whereas the average number of active equations weighed with respect to time, is approxi-
mately 5. Fig. 21(left) shows the time evolution of the integration time step, from which it is apparent that small time steps
ð� 10�5Þ are required for accuracy reasons in the ignition regime, and that large time steps ð� 10�1:5Þ can be taken during the
relaxation and re-generation phases. As can also be observed from the figure, the time step requirement results from the
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choices of head and tail time scales made by the G-Scheme. Figs. 20(right) and 21(right) show that during the explosive re-
gime both T and H increase in such a way that their difference decreases. Thus, although the driving time scale sT becomes
small during the explosions because of the larger value of T, the degree of reduction increases, (NA attains unit value). In-
stead, in-between two successive explosions, H and T attain constant values (4 and 8, respectively), so that NA remains uni-
formly equal to 5. The analysis of the evolution of the time rate of change of J demonstrates that the system has a nearly
linear behavior (also confirmed in Fig. 21(right) by the small changes of the time scales), whereas the nonlinearities are con-
fined within the explosions.
ll other time scales (lines). (For
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In Fig. 22(left) we also display an enlarged region of the union of the spectra over the complete time history. It is noted
that the eigenvalues corresponding to active modes are all comfortably within the stability region of the ERK4 scheme. Fur-
thermore, all modes corresponding to eigenvalues having nearly zero magnitude while always comfortably within the sta-
bility region, are nevertheless also effectively accounted for through the head correction. It should also be noted that the
problem is very stiff, but the stiffness is removed since all modes corresponding to the eigenvalues having large magnitude
are effectively accounted for through the tail correction. The stiffness reduction ratio S=SA resulting from the use of the G-
Scheme is approximately 105 during a complete cycle orbit (Fig. 22(right)). The combination of ‘‘reducing” the largest and
‘‘increasing” the smallest eigenvalues present in the dynamics reduces substantially the stiffness in the problem. Neverthe-
less, the accuracy is retained by accounting for both the fast and slow modes through head and tail corrections.

The degree of accuracy of the applied corrections can be estimated by examining Fig. 23. With the exception of the period
during the explosive phase, the tail spectral gap remains sufficiently small (near 10�0:7 � 0:2), while the spectral separation
between the driving mode and the fastest of the slow modes is much smaller (near 10�1:5 � 0:03) during most of the orbit,
but is always less than 10�0:5 � 0:3 during the complete cycle.

5.2.3. Chaotic attractor
Prescribing the initial condition fp0; T0g ¼ f21:8 Torr;735 Kg yields the chaotic behavior portrayed in the (H2O, O) phase

portrait shown in Fig. 24, while the corresponding time histories of CO and its relative error over a limited time interval are
reported in Fig. 25. The results obtained here are with c ¼ 0:75. We note that the error in the trajectory is between 10�4 and
10�1. Inspection of Fig. 26 shows that the number of active ODEs oscillates about a value of 4, obtained using a constant head
index of H ¼ 4, resulting from the dimension of the invariant subspace, and a tail index varying between T ¼ 6 and 8. Thus,
the approximate dimension of the asymptotic dynamics of the CSTR model problem is 8, whereas the average number of
active equations weighed with respect to time, is near 4. The time histories of the size of the time step and of the time scales
is shown in Fig. 27. Also on the figure are indicated the variations of the slow and fast time scales as identified by the G-
Scheme. Differently from the case of the limit cycle dynamics, we note in Fig. 27(right) that significant nonlinearities occur
at all times in the fast subspace.
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It is apparent that while the evolutions are chaotic, the average size of the time step is approximately 10�3 and the active
modes have time scales approximately between 10�3 and 10�0:2. In Fig. 28(left) we show an enlarged region of the union of
the spectra over the complete time history. As in the periodic attractor case, it is noted that the eigenvalues corresponding to
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active modes are all comfortably within the stability region of the ERK4 scheme, and that the stiffness of the system is sub-
stantially reduced by accounting for the slow and fast modes using asymptotic corrections. It can be seen that the stiffness
reduction ratio S=SA resulting from the use of the G-Scheme is approximately 105 (Fig. 28(right)). The degree of accuracy of
the corrections applied by the scheme can be estimated by examining the tail spectral gap �T and the spectral separation
between the fastest of the slow modes and the driving mode �H�T shown in Fig. 29. We see that on the average
�T � 10�0:5 � 0:3 and �H�T � 10�1. Clearly, during the periods of time in which these values are larger, the accuracies of
the corrections are lower, while when these values are smaller, the corrections are more accurate. Fig. 27(right) shows that
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along the chaotic attractor we have eigenvalues with large imaginary components, indicating that this dynamics is not well
suited to the G-Scheme, which has been designed for systems with eigenvalues having dominant negative real parts.

5.3. A PDE model

As a typical reaction–diffusion model exhibiting a rich dynamic structure, we consider the model proposed by Elezgaray
and Arneodo [28], henceforth referred to as the EA model for short. The EA model is a system of two coupled nonlinear PDEs:
i / Journal of Computational Physics 228 (2009) 466
@u
@t
¼ D

@2u
@x2 þ �

�1ðv � ðu2 þ u3ÞÞ;

@v
@t
¼ D

@2v
@x2 � uþ a

ð138Þ
in ðuðx; tÞ;vðx; tÞÞ; ðx; tÞ 2 ð½0;1�; ½0;1ÞÞ, representing the concentrations of two chemical species with an isothermal explo-
sive kinetics displaying intermittent bursting for some values of the parameters. Here, D;a, and � are positive parameters.
The system (138) is solved with boundary conditions uð0; tÞ ¼ uð1; tÞ ¼ �2 and vð0; tÞ ¼ vð1; tÞ ¼ �4 for t > 0, and initial
conditions uðx;0Þ ¼ vðx;0Þ ¼ 0 for x 2 ½0;1�.

For small and large values of diffusion D, the system stabilizes onto ignited and extinguished steady states, respectively.
Intermediate values of D correspond to operating conditions that allow competition between the tendency to ignition due to
the nonlinear kinetics, and the extinguishing behavior at the boundaries. This induces complex oscillations and intermittent
bursting in the center of the spatial domain. In this case, no invariants are present, hence E ¼ 0.

The discrete form of the set of PDEs is obtained by using a second-order three-points finite difference approximation of
the Laplacian operator, and subsequently solved using the method of lines using NDSolve for the reference solution and ERK4
for the G-Scheme solution. The calculations are obtained by setting D ¼ 0:032;a ¼ 0:01 and � ¼ 0:01 so as to obtain a limit
cycle behavior. We use N ¼ 32;64 and 128 spatial cells. Iso-contours of uðx; tÞ and vðx; tÞ corresponding to the reference solu-
tion is given in Fig. 30. Note that all tests we perform below use the same number of spatial cells in the reference solution as
well as in the solution obtained by the G-Scheme; the two solutions differ only in the treatment of time integration. The evo-
lutions of uðx; tÞ and vðx; tÞ at the mid-point x ¼ 0:5 are displayed in Fig. 31. The relative errors on u and v at the mid-point as
functions of time are shown in Fig. 32; we see that the error on u is typically less than 10�2 except during the fast bursting
periods, while that on v is always less than 10�2. Note that these are just errors due to the approximate temporal treatment
of the G-Scheme. The error due to the spatial discretization is not relevant to the present discussion.

In Fig. 33 we show the evolution of the number of active equations NA. After the initial transient during which the system
approaches the limit cycle, NA attains a periodic behavior where the minimum value is 7 and the maximum is approximately
50. In Fig. 34 we plot the number of active modes NA for N ¼ 32;64, and 128 as functions of time. From the figure we clearly
see that NA becomes essentially independent of the spatial resolution! This fact can be understood by considering that the
number of positive Lyapunov exponents in this problem is 5; thus, the embedding dimension of the asymptotic dynamics of
the problem is 7 when the central manifold, corresponding to the zero exponent, is included together with at least one stable
mode [22]. If we evaluate the average number of active equations weighed with respect to time for a number of cells equal to
32, 64, and 128, we obtain 15.12, 13.24, and 14.22, respectively, whereas the minimum number of active equations is 7,
which is the same as the embedding dimension.

An important consequence of this finding is that the number of active ODEs generated by the G-Scheme in this case is sub-
optimal in the sense that it is somewhat larger than the minimum number of degrees of freedom required to describe the
t
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model dynamics, as identified by the embedding dimension. The reason of this sub-optimal performance lies in the adoption
of eigenvectors as basis vectors to identify the unstable and stable subspaces of the attractor. A nearly ideal decomposition of
the attractor in its stable and unstable components could be achieved by adopting as basis vectors the Lyapunov–Oseledec
filtrations discussed in [16], where a constructive method to find the approximate invariant filtrations is also provided.
Unfortunately, this method is very inefficient computationally and cannot be used within the context of the present
algorithm.
2 0 Fig. 32. Relative errors on u (left) andv¼ 5 1 0 1 5 2 0
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Lastly, as pointed out in Remark 9, NT might be prescribed by specifying that time scales smaller than a threshold smin

should not be considered within the active ODE set; i.e., that T not be larger than a prescribed index value Tmax. In testing
this idea, we find that the smallest Tmax that yields a sufficiently accurate solution of the EA problem is 12, as demonstrated
by the results reported in Fig. 35 which can be compared with those in Figs. 31(left) and 33(left) referring to the calculations
with adaptive T. From these results we see that a static model valid along the limit cycle can be built with at most 12 modes
given that Tmax ¼ 12 for times larger than the initial transient period.

In Fig. 36 we compare the time step evolutions obtained with N ¼ 128 with adaptive T and Tmax ¼ 12. The figure shows
that in the latter case the time step undergoes small amplitude variations about an average of approximately
10�1:6 � 2:5� 10�2, whereas in the first case the enforced tolerance of rtol ¼ 10�4 forces Dt to attain the value of
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10�2:5 � 3:16� 10�3 during the explosive phases. This situation is also clearly noticeable in Fig. 37 by comparing the evolu-
tions of the active subspaces (the strips between the heavy red and blue lines), especially the lower bounds obtained by the
evolutions of sT (heavy blue lines).

6. Discussion and conclusions

It should be stressed that in general any numerical solution is obtained using practical error tolerances. Utilizing an adap-
tive coordinate transformation makes it possible to account algebraically for modes that, within a threshold criterion, remain
frozen or appear to be in equilibrium. The G-Scheme is designed to exploit exactly this idea. It is clear that the larger the error
tolerances chosen, the larger is the number of modes that appear to be frozen and/or in equilibrium, and the greater the de-
gree of reduction achieved by the G-Scheme. On the other hand, if one requires smaller error tolerances, then fewer modes
appear to be frozen and/or in equilibrium, and thus a lower degree of reduction is achieved. This is expected, since in this
case the higher accuracy solution demands greater resolution of more time scales.

With the above understanding, the present work provides a framework for the numerical solution of stiff problems char-
acterized by fast dissipative time scales. The interesting feature of this approach is its ability to exploit adaptively the model
reduction opportunities offered by the problem, which originate from the development of both very-slow and/or very-fast
time scales.

This ability allows one to solve a number of DEs, associated with a range of time scales, denoted as ‘‘active”, i.e., interme-
diate between the very-slow and very-fast, that changes during the problem evolution. The DEs related to the active time
scales are non-stiff and can be solved using explicit solvers, whereas the contributions of the slow and fast time scales
are accounted for with algebraic corrections. The integration time step of the explicit solver is of the order of the fastest time
scale associated with the active dynamics, since the active DEs do not contain faster scales and therefore the integration time
step is not constrained by stability limits potentially originating from them.

The combined advantages should in principle tend to minimize the computational work (expressed as the product of the
number of DEs solved at each time step and the total number of time steps) to obtain the complete integration. In the present
formulation of the G-Scheme, the penalty paid to achieve this work reduction is the evaluation of the Jacobian matrix and the
computation of the eigensystem at each time step, plus additional work needed to identify the head and tail dimensions.
Clearly, the G-Scheme will be as efficient as, say, an implicit BDF scheme when the total work reduction will more than bal-
ance the costs associated with the spectral characterization of the problem. Optimization of the G-Scheme and a careful cost
analysis will be the subject of a forthcoming investigation. Among possible improvements of the computational efficiency of
the scheme, one could resort to the exploitation of the knowledge at previous time steps to obtain useful information at the
current time level.

Another important aspect that will also be the subject of future work is a careful error analysis to provide an estimate of
the overall accuracy of the algorithm, or more importantly to provide a solution with a given (precise) accuracy. There are
multiple sources of inaccuracy in the G-Scheme:


 Inaccuracy in the solution of the active DEs, especially with regard to the approximation of neglecting the rotation of the
basis vectors which define the local change of frame of reference. This error can be controlled by either reducing the size of
the time step, when the time rate of change of the rotation of the basis vectors is large (i.e., when nonlinearities are impor-
tant), so that the terms in the equations that involve the rotation of the basis vectors are of higher order, or by including
such terms in an explicit fashion.


 Inaccuracy of the explicit numerical method used to solve the active DEs. This error can be reduced/controlled by the use
of an inner variable time integration step to ensure a prescribed accuracy for the solution, and/or using a variable order
time integration scheme.
eavy blue line), and all other time scales (other lines), for N ¼ 128 with (left)
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 Inaccuracy due to the slow/fast decoupling, that is quality of the basis vectors, which affects both the efficiency of the
scheme by purifying the active DEs from both the slow and fast time scales, and the accuracy of the identification of
the SIM. For problems in which �H 	 1; �H�T 	 1 and �T 	 1, these errors are expected to be exponentially small. How-
ever, when no clear spectral gaps exist, these errors can be reduced by appropriately increasing the number of active
modes so as to satisfy a user-prescribed accuracy level.

Having reviewed what remains to be done, we want to conclude by stressing that the main goal of this paper is the pre-
sentation of the G-Scheme framework and the verification of its ability in achieving an adaptive model reduction. Regarding
this aspect, the validation carried out by considering a range of test cases involving both linear and nonlinear behavior, both
ODEs and PDEs, containing both simple and nontrivial asymptotic dynamics, has successfully demonstrated the potential of
the G-Scheme. We already have successfully tested the G-Scheme in problems related to the kinetics of large hydrocarbons
(propane, n-heptane) involving up to 560 species and 2538 reversible reactions [32], and lastly in problems related to bio-
logical systems. Clearly, it is outside the scope of this paper to report about these findings, which will be considered in forth-
coming papers. In addition to addressing issues related to computational efficiency and error analysis, much work is still
needed to translate this framework into a useful computational tool. We plan to make the package available to users and
voluntary developers under the open-source paradigm in the near-future.
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